BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 18627461)

  • 21. Deletion of MEC1 suppresses the replicative senescence of the cdc13-2 mutant in Saccharomyces cerevisiae.
    Yao Y; Fekete-Szücs E; Rosas Bringas FR; Chang M
    G3 (Bethesda); 2023 May; 13(5):. PubMed ID: 36947417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae.
    Grandin N; Gallego ME; White CI; Charbonneau M
    DNA Repair (Amst); 2020 Dec; 96():102996. PubMed ID: 33126043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rap1 prevents telomere fusions by nonhomologous end joining.
    Pardo B; Marcand S
    EMBO J; 2005 Sep; 24(17):3117-27. PubMed ID: 16096640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states.
    Teixeira MT; Arneric M; Sperisen P; Lingner J
    Cell; 2004 Apr; 117(3):323-35. PubMed ID: 15109493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A subtelomeric region affects telomerase-negative replicative senescence in Saccharomyces cerevisiae.
    Jolivet P; Serhal K; Graf M; Eberhard S; Xu Z; Luke B; Teixeira MT
    Sci Rep; 2019 Feb; 9(1):1845. PubMed ID: 30755624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks.
    Casari E; Gnugnoli M; Rinaldi C; Pizzul P; Colombo CV; Bonetti D; Longhese MP
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abrupt telomere losses and reduced end-resection can explain accelerated senescence of Smc5/6 mutants lacking telomerase.
    Noël JF; Wellinger RJ
    DNA Repair (Amst); 2011 Mar; 10(3):271-82. PubMed ID: 21190904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early replication of short telomeres in budding yeast.
    Bianchi A; Shore D
    Cell; 2007 Mar; 128(6):1051-62. PubMed ID: 17382879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. End resection initiates genomic instability in the absence of telomerase.
    Hackett JA; Greider CW
    Mol Cell Biol; 2003 Dec; 23(23):8450-61. PubMed ID: 14612391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Telomerase-independent proliferation is influenced by cell type in Saccharomyces cerevisiae.
    Lowell JE; Roughton AI; Lundblad V; Pillus L
    Genetics; 2003 Jul; 164(3):909-21. PubMed ID: 12871903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous telomere to telomere fusions occur in unperturbed fission yeast cells.
    Almeida H; Godinho Ferreira M
    Nucleic Acids Res; 2013 Mar; 41(5):3056-67. PubMed ID: 23335786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae.
    Pennaneach V; Putnam CD; Kolodner RD
    Mol Microbiol; 2006 Mar; 59(5):1357-68. PubMed ID: 16468981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppression of chromosome healing and anticheckpoint pathways in yeast postsenescence survivors.
    Lai X; Heierhorst J
    Genetics; 2013 Jun; 194(2):403-8. PubMed ID: 23535383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Telomere recombination accelerates cellular aging in Saccharomyces cerevisiae.
    Chen XF; Meng FL; Zhou JQ
    PLoS Genet; 2009 Jun; 5(6):e1000535. PubMed ID: 19557187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination.
    Tsai YL; Tseng SF; Chang SH; Lin CC; Teng SC
    Mol Cell Biol; 2002 Aug; 22(16):5679-87. PubMed ID: 12138180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Break-induced replication and telomerase-independent telomere maintenance require Pol32.
    Lydeard JR; Jain S; Yamaguchi M; Haber JE
    Nature; 2007 Aug; 448(7155):820-3. PubMed ID: 17671506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae.
    Enomoto S; Glowczewski L; Berman J
    Mol Biol Cell; 2002 Aug; 13(8):2626-38. PubMed ID: 12181334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An mre11 mutation that promotes telomere recombination and an efficient bypass of senescence.
    Joseph IS; Kumari A; Bhattacharyya MK; Gao H; Li B; Lustig AJ
    Genetics; 2010 Jul; 185(3):761-70. PubMed ID: 20421597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of Recombination at Yeast Telomeres.
    Simon MN; Churikov D; Géli V
    Methods Mol Biol; 2021; 2153():395-402. PubMed ID: 32840794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell size regulation during telomere-directed senescence in Saccharomyces cerevisiae.
    Matsui A; Matsuura A
    Biosci Biotechnol Biochem; 2010; 74(1):195-8. PubMed ID: 20057141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.