BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18627492)

  • 1. Foraging for space and avoidance of physical obstructions by plant roots: a comparative study of grasses from contrasting habitats.
    Semchenko M; Zobel K; Heinemeyer A; Hutchings MJ
    New Phytol; 2008; 179(4):1162-1170. PubMed ID: 18627492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How functional is a trait? Phosphorus mobilization through root exudates differs little between Carex species with and without specialized dauciform roots.
    Güsewell S; Schroth MH
    New Phytol; 2017 Sep; 215(4):1438-1450. PubMed ID: 28670743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aboveground productivity and root-shoot allocation differ between native and introduced grass species.
    Wilsey BJ; Polley HW
    Oecologia; 2006 Nov; 150(2):300-9. PubMed ID: 16927104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-soil feedback: testing the generality with the same grasses in serpentine and prairie soils.
    Casper BB; Bentivenga SP; Ji B; Doherty JH; Edenborn HM; Gustafson DJ
    Ecology; 2008 Aug; 89(8):2154-64. PubMed ID: 18724725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses to mineral nutrient availability and heterogeneity in physiologically integrated sedges from contrasting habitats.
    D'Hertefeldt T; Falkengren-Grerup U; Jónsdóttir IS
    Plant Biol (Stuttg); 2011 May; 13(3):483-92. PubMed ID: 21489099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots.
    Céccoli G; Ramos JC; Ortega LI; Acosta JM; Perreta MG
    Biocell; 2011 Apr; 35(1):9-17. PubMed ID: 21667667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking leaf and root trait syndromes among 39 grassland and savannah species.
    Tjoelker MG; Craine JM; Wedin D; Reich PB; Tilman D
    New Phytol; 2005 Aug; 167(2):493-508. PubMed ID: 15998401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of relative growth rate to root foraging by annual and perennial grasses from California oak woodlands.
    Aanderud ZT; Bledsoe CS; Richards JH
    Oecologia; 2003 Aug; 136(3):424-30. PubMed ID: 12750991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological variability in tree root architecture indirectly affects coexistence among competitors in the understory.
    Aschehoug ET; Callaway RM
    Ecology; 2014 Jul; 95(7):1731-6. PubMed ID: 25163107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture.
    Chen M; Chen B; Marschner P
    J Environ Sci (China); 2008; 20(10):1231-7. PubMed ID: 19143348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes.
    Semchenko M; Saar S; Lepik A
    New Phytol; 2014 Nov; 204(3):631-637. PubMed ID: 25039372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil feedback of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity.
    van der Putten WH; Kowalchuk GA; Brinkman EP; Doodeman GT; van der Kaaij RM; Kamp AF; Menting FB; Veenendaal EM
    Ecology; 2007 Apr; 88(4):978-88. PubMed ID: 17536713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses.
    Arredondo JT; Johnson DA
    J Exp Bot; 2011 Nov; 62(15):5581-94. PubMed ID: 21868398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: an in vitro study.
    Técher D; Laval-Gilly P; Henry S; Bennasroune A; Formanek P; Martinez-Chois C; D'Innocenzo M; Muanda F; Dicko A; Rejšek K; Falla J
    Sci Total Environ; 2011 Sep; 409(20):4489-95. PubMed ID: 21782215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.
    Yin H; Li Y; Xiao J; Xu Z; Cheng X; Liu Q
    Glob Chang Biol; 2013 Jul; 19(7):2158-67. PubMed ID: 23504744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxic effects of Cu(2+) on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass.
    Kopittke PM; Asher CJ; Blamey FP; Menzies NW
    Sci Total Environ; 2009 Aug; 407(16):4616-21. PubMed ID: 19467695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence.
    Mazzacavallo MG; Kulmatiski A
    PLoS One; 2015; 10(12):e0144300. PubMed ID: 26633177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root exudate composition of grass and forb species in natural grasslands.
    Dietz S; Herz K; Gorzolka K; Jandt U; Bruelheide H; Scheel D
    Sci Rep; 2020 Jul; 10(1):10691. PubMed ID: 32612150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.
    Eissenstat DM; Kucharski JM; Zadworny M; Adams TS; Koide RT
    New Phytol; 2015 Oct; 208(1):114-24. PubMed ID: 25970701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.
    Liu B; Li H; Zhu B; Koide RT; Eissenstat DM; Guo D
    New Phytol; 2015 Oct; 208(1):125-36. PubMed ID: 25925733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.