These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Responses of pathogenic and nonpathogenic yeast species to steroids reveal the functioning and evolution of multidrug resistance transcriptional networks. Banerjee D; Lelandais G; Shukla S; Mukhopadhyay G; Jacq C; Devaux F; Prasad R Eukaryot Cell; 2008 Jan; 7(1):68-77. PubMed ID: 17993571 [TBL] [Abstract][Full Text] [Related]
3. Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Owsianik G; Balzi l L; Ghislain M Mol Microbiol; 2002 Mar; 43(5):1295-308. PubMed ID: 11918814 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. Ma M; Liu ZL BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074 [TBL] [Abstract][Full Text] [Related]
5. The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Pérez-Sampietro M; Serra-Cardona A; Canadell D; Casas C; Ariño J; Herrero E Sci Rep; 2016 Sep; 6():32836. PubMed ID: 27618952 [TBL] [Abstract][Full Text] [Related]
6. Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae. Ihrig J; Hausmann A; Hain A; Richter N; Hamza I; Lill R; Mühlenhoff U Eukaryot Cell; 2010 Mar; 9(3):460-71. PubMed ID: 20008079 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Wysocki R; Fortier PK; Maciaszczyk E; Thorsen M; Leduc A; Odhagen A; Owsianik G; Ulaszewski S; Ramotar D; Tamás MJ Mol Biol Cell; 2004 May; 15(5):2049-60. PubMed ID: 14978214 [TBL] [Abstract][Full Text] [Related]
8. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen. Brombacher K; Fischer BB; Rüfenacht K; Eggen RI Yeast; 2006 Jul; 23(10):741-50. PubMed ID: 16862604 [TBL] [Abstract][Full Text] [Related]
9. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway. He BZ; Zhou X; O'Shea EK Elife; 2017 May; 6():. PubMed ID: 28485712 [TBL] [Abstract][Full Text] [Related]
10. [Rpn4p is a positive and negative transcriptional regulator of the ubiquitin-proteasome system]. Karpov DS; Osipov SA; Preobrazhenskaia OV; Karpov VL Mol Biol (Mosk); 2008; 42(3):518-25. PubMed ID: 18702311 [TBL] [Abstract][Full Text] [Related]
11. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Lelandais G; Tanty V; Geneix C; Etchebest C; Jacq C; Devaux F Genome Biol; 2008; 9(11):R164. PubMed ID: 19025642 [TBL] [Abstract][Full Text] [Related]
12. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts. Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B mBio; 2016 Oct; 7(5):. PubMed ID: 27795405 [TBL] [Abstract][Full Text] [Related]
13. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches. Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527 [TBL] [Abstract][Full Text] [Related]
14. Positive autoregulation and repression of transactivation are key regulatory features of the Candida glabrata Pdr1 transcription factor. Khakhina S; Simonicova L; Moye-Rowley WS Mol Microbiol; 2018 Mar; 107(6):747-764. PubMed ID: 29363861 [TBL] [Abstract][Full Text] [Related]
15. Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in saccharomyces cerevisiae. Schüller C; Mamnun YM; Wolfger H; Rockwell N; Thorner J; Kuchler K Mol Biol Cell; 2007 Dec; 18(12):4932-44. PubMed ID: 17881724 [TBL] [Abstract][Full Text] [Related]
16. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction. Nishikawa JL; Boeszoermenyi A; Vale-Silva LA; Torelli R; Posteraro B; Sohn YJ; Ji F; Gelev V; Sanglard D; Sanguinetti M; Sadreyev RI; Mukherjee G; Bhyravabhotla J; Buhrlage SJ; Gray NS; Wagner G; Näär AM; Arthanari H Nature; 2016 Feb; 530(7591):485-9. PubMed ID: 26886795 [TBL] [Abstract][Full Text] [Related]
17. Evidence that Ergosterol Biosynthesis Modulates Activity of the Pdr1 Transcription Factor in Candida glabrata. Vu BG; Thomas GH; Moye-Rowley WS mBio; 2019 Jun; 10(3):. PubMed ID: 31186322 [TBL] [Abstract][Full Text] [Related]
18. Saccharomyces cerevisiae resistance to chlorinated phenoxyacetic acid herbicides involves Pdr1p-mediated transcriptional activation of TPO1 and PDR5 genes. Teixeira MC; Sá-Correia I Biochem Biophys Res Commun; 2002 Mar; 292(2):530-7. PubMed ID: 11906193 [TBL] [Abstract][Full Text] [Related]
19. Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Courel M; Lallet S; Camadro JM; Blaiseau PL Mol Cell Biol; 2005 Aug; 25(15):6760-71. PubMed ID: 16024809 [TBL] [Abstract][Full Text] [Related]
20. Diazaborine resistance in the yeast Saccharomyces cerevisiae reveals a link between YAP1 and the pleiotropic drug resistance genes PDR1 and PDR3. Wendler F; Bergler H; Prutej K; Jungwirth H; Zisser G; Kuchler K; Högenauer G J Biol Chem; 1997 Oct; 272(43):27091-8. PubMed ID: 9341149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]