BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18627619)

  • 1. Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: implications for diabetes-related hypomagnesaemia and carbohydrate biocatalysis.
    Zea CJ; Camci-Unal G; Pohl NL
    Chem Cent J; 2008 Jul; 2():15. PubMed ID: 18627619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-substrate interactions with an antibiotic resistance enzyme: aminoglycoside nucleotidyltransferase(2'')-Ia characterized by kinetic and thermodynamic methods.
    Wright E; Serpersu EH
    Biochemistry; 2005 Aug; 44(34):11581-91. PubMed ID: 16114895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of the products, 8-oxo-dGMP, dGMP, and pyrophosphate with the MutT nucleoside triphosphate pyrophosphohydrolase.
    Saraswat V; Massiah MA; Lopez G; Amzel LM; Mildvan AS
    Biochemistry; 2002 Dec; 41(52):15566-77. PubMed ID: 12501185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metal ion catalyzed decomposition of nucleoside diphosphate sugars.
    Nunez HA; Barker R
    Biochemistry; 1976 Aug; 15(17):3843-7. PubMed ID: 8095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of solvated UDP-glucose in interaction with Mg2+ cations.
    Petrová P; Koca J; Imberty A
    Eur J Biochem; 2001 Oct; 268(20):5365-74. PubMed ID: 11606199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of bacterial glycogen. VI. Differences in the kinetic properties of the Escherichia coli B adenosine diphosphate glucose pyrophosphorylase depending on whether Mg++ or Mn++ serves as divalent cation.
    Gentner N; Preiss J
    J Biol Chem; 1968 Nov; 243(22):5882-91. PubMed ID: 4880289
    [No Abstract]   [Full Text] [Related]  

  • 8. Modulation of cyclin-dependent kinase 4 by binding of magnesium (II) and manganese (II).
    Tian G; Kane LS; Holmes WD; Davis ST
    Biophys Chem; 2002 Jan; 95(1):79-90. PubMed ID: 11880175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal cation controls phosphate release in the myosin ATPase.
    Ge J; Huang F; Nesmelov YE
    Protein Sci; 2017 Nov; 26(11):2181-2186. PubMed ID: 28795448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of binding of calcium, magnesium, and zinc to the N-methyl-D-aspartate receptor ion channel peptidic inhibitors, conantokin-G and conantokin-T.
    Prorok M; Castellino FJ
    J Biol Chem; 1998 Jul; 273(31):19573-8. PubMed ID: 9677382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two beta-1,3-glucosyltransferases from Escherichia coli serotypes O56 and O152.
    Brockhausen I; Hu B; Liu B; Lau K; Szarek WA; Wang L; Feng L
    J Bacteriol; 2008 Jul; 190(14):4922-32. PubMed ID: 18487334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution conformation of various uridine diphosphoglucose salts as probed by NMR spectroscopy.
    Monteiro C; Neyret S; Leforestier J; Hervé du Penhoat C
    Carbohydr Res; 2000 Oct; 329(1):141-55. PubMed ID: 11086694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of divalent manganese and magnesium on the kinase activity of leucine-rich repeat kinase 2 (LRRK2).
    Lovitt B; Vanderporten EC; Sheng Z; Zhu H; Drummond J; Liu Y
    Biochemistry; 2010 Apr; 49(14):3092-100. PubMed ID: 20205471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient chemoenzymatic synthesis of uridine 5'-diphosphate N-acetylglucosamine and uridine 5'-diphosphate N-trifluoacetyl glucosamine with three recombinant enzymes.
    Li X; Qi C; Wei P; Huang L; Cai J; Xu Z
    Prep Biochem Biotechnol; 2017 Oct; 47(9):852-859. PubMed ID: 27220687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divalent metal ions control activity and inhibition of protein kinases.
    Knape MJ; Ballez M; Burghardt NC; Zimmermann B; Bertinetti D; Kornev AP; Herberg FW
    Metallomics; 2017 Nov; 9(11):1576-1584. PubMed ID: 29043344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycoproten biosynthesis in Trypanosoma brucei. The glycosylation of Glycoproteins located in and attached to the plasma membrane.
    Brett CT; Voorheis HP
    Eur J Biochem; 1980 Aug; 109(1):139-50. PubMed ID: 6447596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of divalent cations on bovine serum albumin (BSA) and tannic acid interaction and its influence on turbidity and in vitro protein digestibility.
    Kaspchak E; Goedert AC; Igarashi-Mafra L; Mafra MR
    Int J Biol Macromol; 2019 Sep; 136():486-492. PubMed ID: 31207325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological concentrations of divalent magnesium ion activate the serine/threonine specific protein kinase ERK2.
    Waas WF; Dalby KN
    Biochemistry; 2003 Mar; 42(10):2960-70. PubMed ID: 12627962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.