These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18628239)

  • 1. Recombination of protein fragments: a promising approach toward engineering proteins with novel nanomechanical properties.
    Balamurali MM; Sharma D; Chang A; Khor D; Chu R; Li H
    Protein Sci; 2008 Oct; 17(10):1815-26. PubMed ID: 18628239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy.
    Rief M; Gautel M; Schemmel A; Gaub HE
    Biophys J; 1998 Dec; 75(6):3008-14. PubMed ID: 9826620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.
    Fowler SB; Best RB; Toca Herrera JL; Rutherford TJ; Steward A; Paci E; Karplus M; Clarke J
    J Mol Biol; 2002 Sep; 322(4):841-9. PubMed ID: 12270718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency modulation atomic force microscopy reveals individual intermediates associated with each unfolded I27 titin domain.
    Higgins MJ; Sader JE; Jarvis SP
    Biophys J; 2006 Jan; 90(2):640-7. PubMed ID: 16258037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible unfolding of individual titin immunoglobulin domains by AFM.
    Rief M; Gautel M; Oesterhelt F; Fernandez JM; Gaub HE
    Science; 1997 May; 276(5315):1109-12. PubMed ID: 9148804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain insertion effectively regulates the mechanical unfolding hierarchy of elastomeric proteins: toward engineering multifunctional elastomeric proteins.
    Peng Q; Li H
    J Am Chem Soc; 2009 Oct; 131(39):14050-6. PubMed ID: 19746906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering proteins with enhanced mechanical stability by force-specific sequence motifs.
    Lu W; Negi SS; Oberhauser AF; Braun W
    Proteins; 2012 May; 80(5):1308-15. PubMed ID: 22274941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains.
    Garcia TI; Oberhauser AF; Braun W
    Proteins; 2009 May; 75(3):706-18. PubMed ID: 19003986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic study of the mechanical unfolding of a protein by AFM.
    Kawakami M; Byrne K; Brockwell DJ; Radford SE; Smith DA
    Biophys J; 2006 Jul; 91(2):L16-8. PubMed ID: 16698787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulling single molecules of titin by AFM--recent advances and physiological implications.
    Linke WA; Grützner A
    Pflugers Arch; 2008 Apr; 456(1):101-15. PubMed ID: 18058125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy.
    Sarkar A; Caamano S; Fernandez JM
    J Biol Chem; 2005 Feb; 280(8):6261-4. PubMed ID: 15632200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for probing the mechanical unfolding pathway of proteins in detail.
    Best RB; Fowler SB; Toca-Herrera JL; Clarke J
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12143-8. PubMed ID: 12218181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding forces of titin and fibronectin domains directly measured by AFM.
    Rief M; Gautel M; Gaub HE
    Adv Exp Med Biol; 2000; 481():129-36; discussion 137-41. PubMed ID: 10987070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation.
    Best RB; Li B; Steward A; Daggett V; Clarke J
    Biophys J; 2001 Oct; 81(4):2344-56. PubMed ID: 11566804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanical hierarchies of fibronectin observed with single-molecule AFM.
    Oberhauser AF; Badilla-Fernandez C; Carrion-Vazquez M; Fernandez JM
    J Mol Biol; 2002 May; 319(2):433-47. PubMed ID: 12051919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of an elastic scaffolding polyprotein based on an SH3-binding intrinsically disordered titin PEVK module.
    Tsai WL; Forbes JG; Wang K
    Protein Expr Purif; 2012 Oct; 85(2):187-99. PubMed ID: 22910563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic molecular model of the reversible unfolding and refolding of titin under force extension.
    Zhang B; Xu G; Evans JS
    Biophys J; 1999 Sep; 77(3):1306-15. PubMed ID: 10465743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise unfolding of titin under force-clamp atomic force microscopy.
    Oberhauser AF; Hansma PK; Carrion-Vazquez M; Fernandez JM
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):468-72. PubMed ID: 11149943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unfolding of titin domains studied by molecular dynamics simulations.
    Gao M; Lu H; Schulten K
    J Muscle Res Cell Motil; 2002; 23(5-6):513-21. PubMed ID: 12785101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.