These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18628358)

  • 21. Physical activity pattern of children assessed by triaxial accelerometry.
    Hoos MB; Kuipers H; Gerver WJ; Westerterp KR
    Eur J Clin Nutr; 2004 Oct; 58(10):1425-8. PubMed ID: 15127091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of exercise training amount on physical activity energy expenditure.
    Hollowell RP; Willis LH; Slentz CA; Topping JD; Bhakpar M; Kraus WE
    Med Sci Sports Exerc; 2009 Aug; 41(8):1640-4. PubMed ID: 19568195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limitations of cadence-based walking for assessing bouts of moderate-to vigorous-intensity physical activity under free-living conditions.
    Ayabe M; Brubaker PH; Sunami Y; Kumahara H; Schutz Y; Tanaka H
    J Sports Sci; 2013; 31(16):1805-14. PubMed ID: 23879643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of interdevice measurement difference of pedometers in younger and older adults.
    Ayabe M; Ishii K; Takayama K; Aoki J; Tanaka H
    Br J Sports Med; 2010 Feb; 44(2):95-9. PubMed ID: 18308892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of pedometer and accelerometer measures of physical activity during preschool time on 3- to 5-year-old children.
    Pagels P; Boldemann C; Raustorp A
    Acta Paediatr; 2011 Jan; 100(1):116-20. PubMed ID: 20678161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of low-intensity physical activity by triaxial accelerometry.
    Midorikawa T; Tanaka S; Kaneko K; Koizumi K; Ishikawa-Takata K; Futami J; Tabata I
    Obesity (Silver Spring); 2007 Dec; 15(12):3031-8. PubMed ID: 18198312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validity of consumer-based physical activity monitors.
    Lee JM; Kim Y; Welk GJ
    Med Sci Sports Exerc; 2014 Sep; 46(9):1840-8. PubMed ID: 24777201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validity of resting energy expenditure estimated by an activity monitor compared to indirect calorimetry.
    Dellava JE; Hoffman DJ
    Br J Nutr; 2009 Jul; 102(1):155-9. PubMed ID: 19138436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Test-retest reliability of step counts with the ActivPAL™ device in common daily activities.
    Dahlgren G; Carlsson D; Moorhead A; Häger-Ross C; McDonough SM
    Gait Posture; 2010 Jul; 32(3):386-90. PubMed ID: 20655228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy expended by adults with and without intellectual disabilities during activities of daily living.
    Lante K; Reece J; Walkley J
    Res Dev Disabil; 2010; 31(6):1380-9. PubMed ID: 20685074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reliability and validity of the instrument used in BRFSS to assess physical activity.
    Yore MM; Ham SA; Ainsworth BE; Kruger J; Reis JP; Kohl HW; Macera CA
    Med Sci Sports Exerc; 2007 Aug; 39(8):1267-74. PubMed ID: 17762359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of energy expenditure in children using the RT3 accelerometer.
    Kavouras SA; Sarras SE; Tsekouras YE; Sidossis LS
    J Sports Sci; 2008 Jul; 26(9):959-66. PubMed ID: 18569562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Within- and between-individual variability in estimated energy expenditure and habitual physical activity among young adults.
    Wickel EE; Eisenmann JC
    Eur J Clin Nutr; 2006 Apr; 60(4):538-44. PubMed ID: 16340951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polar Activity Watch 200: a new device to accurately assess energy expenditure.
    Brugniaux JV; Niva A; Pulkkinen I; Laukkanen RM; Richalet JP; Pichon AP
    Br J Sports Med; 2010 Mar; 44(4):245-9. PubMed ID: 18413338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring activity levels of young people: the validity of pedometers.
    McNamara E; Hudson Z; Taylor SJ
    Br Med Bull; 2010; 95():121-37. PubMed ID: 20562207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity monitoring in assessing activities of daily living.
    Casaburi R
    COPD; 2007 Sep; 4(3):251-5. PubMed ID: 17729069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of type, duration, and intensity of physical activity using an accelerometer.
    Bonomi AG; Goris AH; Yin B; Westerterp KR
    Med Sci Sports Exerc; 2009 Sep; 41(9):1770-7. PubMed ID: 19657292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring actical accelerometers as an objective measure of physical activity in people with multiple sclerosis.
    Kayes NM; Schluter PJ; McPherson KM; Leete M; Mawston G; Taylor D
    Arch Phys Med Rehabil; 2009 Apr; 90(4):594-601. PubMed ID: 19345774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.