BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18628705)

  • 1. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions.
    Costi JJ; Stokes IA; Gardner-Morse MG; Iatridis JC
    Spine (Phila Pa 1976); 2008 Jul; 33(16):1731-8. PubMed ID: 18628705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural behavior of human lumbar spinal motion segments.
    Gardner-Morse MG; Stokes IA
    J Biomech; 2004 Feb; 37(2):205-12. PubMed ID: 14706323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom.
    Gardner-Morse MG; Stokes IA; Churchill D; Badger G
    Stud Health Technol Inform; 2002; 91():167-72. PubMed ID: 15457717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro biomechanical comparison of Cadisc™-L with natural lumbar discs in axial compression and sagittal flexion.
    McNally D; Naylor J; Johnson S
    Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S612-7. PubMed ID: 22411042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Complex Loading Conditions on Intervertebral Disc Failure.
    Berger-Roscher N; Casaroli G; Rasche V; Villa T; Galbusera F; Wilke HJ
    Spine (Phila Pa 1976); 2017 Jan; 42(2):E78-E85. PubMed ID: 27187053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study.
    Rohlmann A; Mann A; Zander T; Bergmann G
    Eur Spine J; 2009 Jan; 18(1):89-97. PubMed ID: 19043744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture.
    Gardner-Morse MG; Stokes IA
    J Orthop Res; 2003 May; 21(3):547-52. PubMed ID: 12706030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the torsional stiffness of the lumbar spine in flexion and extension.
    Garges KJ; Nourbakhsh A; Morris R; Yang J; Mody M; Patterson R
    J Manipulative Physiol Ther; 2008 Oct; 31(8):563-9. PubMed ID: 18984238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of potting technique on the measurement of six degree-of-freedom viscoelastic properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech Eng; 2015 May; 137(5):054501. PubMed ID: 25646970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading.
    Frei H; Oxland TR; Rathonyi GC; Nolte LP
    Spine (Phila Pa 1976); 2001 Oct; 26(19):2080-9. PubMed ID: 11698883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic biomechanical examination of the lumbar spine with implanted total disc replacement using a pendulum testing system.
    Daniels AH; Paller DJ; Koruprolu S; McDonnell M; Palumbo MA; Crisco JJ
    Spine (Phila Pa 1976); 2012 Nov; 37(23):E1438-43. PubMed ID: 22869057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stiffness of lumbar spinal motion segments with a high-intensity zone in the anulus fibrosus.
    Schmidt TA; An HS; Lim TH; Nowicki BH; Haughton VM
    Spine (Phila Pa 1976); 1998 Oct; 23(20):2167-73. PubMed ID: 9802156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro biomechanical study to quantify range of motion, intradiscal pressure, and facet force of 3-level dynamic stabilization constructs with decreased stiffness.
    Lee JK; Gomez J; Michelsen C; Kim Y; Moldavsky M; Chinthakunta SR; Khalil S
    Spine (Phila Pa 1976); 2013 Oct; 38(22):1913-9. PubMed ID: 23921330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Effect of L
    Cai XY; Sun MS; Huang YP; Liu ZX; Liu CJ; Du CF; Yang Q
    Orthop Surg; 2020 Jun; 12(3):917-930. PubMed ID: 32476282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement.
    Holsgrove TP; Gill HS; Miles AW; Gheduzzi S
    Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.
    Bezci SE; Klineberg EO; O'Connell GD
    J Mech Behav Biomed Mater; 2018 Jan; 77():353-359. PubMed ID: 28965042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the Neutral Zone of sheep intervertebral joints during dynamic motions: an in vitro study.
    Thompson RE; Barker TM; Pearcy MJ
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):89-98. PubMed ID: 12550806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.