These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18628902)

  • 1. Whole genome analysis of a wine yeast strain.
    Hauser NC; Fellenberg K; Gil R; Bastuck S; Hoheisel JD; Pérez-Ortín JE
    Comp Funct Genomics; 2001; 2(2):69-79. PubMed ID: 18628902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures.
    Dunn B; Levine RP; Sherlock G
    BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of genomic variability on gene expression in environmental Saccharomyces cerevisiae strains.
    Treu L; Toniolo C; Nadai C; Sardu A; Giacomini A; Corich V; Campanaro S
    Environ Microbiol; 2014 May; 16(5):1378-97. PubMed ID: 24238297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genome analysis of a Saccharomyces cerevisiae wine strain.
    Borneman AR; Forgan AH; Pretorius IS; Chambers PJ
    FEMS Yeast Res; 2008 Nov; 8(7):1185-95. PubMed ID: 18778279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae.
    Pizarro FJ; Jewett MC; Nielsen J; Agosin E
    Appl Environ Microbiol; 2008 Oct; 74(20):6358-68. PubMed ID: 18723660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomics of wild type yeast strains unveils important genome diversity.
    Carreto L; Eiriz MF; Gomes AC; Pereira PM; Schuller D; Santos MA
    BMC Genomics; 2008 Nov; 9():524. PubMed ID: 18983662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FLO gene-dependent phenotypes in industrial wine yeast strains.
    Govender P; Bester M; Bauer FF
    Appl Microbiol Biotechnol; 2010 Apr; 86(3):931-45. PubMed ID: 20013339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural yeast promoter variants reveal epistasis in the generation of transcriptional-mediated noise and its potential benefit in stressful conditions.
    Liu J; Martin-Yken H; Bigey F; Dequin S; François JM; Capp JP
    Genome Biol Evol; 2015 Mar; 7(4):969-84. PubMed ID: 25762217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae.
    Borneman AR; Forgan AH; Kolouchova R; Fraser JA; Schmidt SA
    G3 (Bethesda); 2016 Apr; 6(4):957-71. PubMed ID: 26869621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized fermentation of grape juice by laboratory strains of Saccharomyces cerevisiae.
    Harsch MJ; Lee SA; Goddard MR; Gardner RC
    FEMS Yeast Res; 2010 Feb; 10(1):72-82. PubMed ID: 19840118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of fermentation and enzyme expression profiles among industrial Saccharomyces cerevisiae strains.
    Uebayashi K; Shimizu H; Matsuda F
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):7071-7081. PubMed ID: 29882163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-Genome Sequence and Variant Analysis of W303, a Widely-Used Strain of
    Matheson K; Parsons L; Gammie A
    G3 (Bethesda); 2017 Jul; 7(7):2219-2226. PubMed ID: 28584079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.
    Barbosa C; García-Martínez J; Pérez-Ortín JE; Mendes-Ferreira A
    PLoS One; 2015; 10(4):e0122709. PubMed ID: 25884705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Sequencing and Comparative Analysis of Saccharomyces cerevisiae Strains of the Peterhof Genetic Collection.
    Drozdova PB; Tarasov OV; Matveenko AG; Radchenko EA; Sopova JV; Polev DE; Inge-Vechtomov SG; Dobrynin PV
    PLoS One; 2016; 11(5):e0154722. PubMed ID: 27152522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C; Nicaud JM; Barre P; Gaillardin C
    Yeast; 1997 Aug; 13(10):903-15. PubMed ID: 9271106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations.
    Xufre A; Albergaria H; Inácio J; Spencer-Martins I; Gírio F
    Int J Food Microbiol; 2006 May; 108(3):376-84. PubMed ID: 16504329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation.
    Rossouw D; Bauer FF
    Appl Microbiol Biotechnol; 2009 Oct; 84(5):937-54. PubMed ID: 19711068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression levels and patterns of glycolytic yeast genes during wine fermentation.
    Puig S; Pérez-Ortín JE
    Syst Appl Microbiol; 2000 Jun; 23(2):300-3. PubMed ID: 10930084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress response and nitrogen utilization are strongly variable in Saccharomyces cerevisiae wine strains with different fermentation performances.
    Treu L; Campanaro S; Nadai C; Toniolo C; Nardi T; Giacomini A; Valle G; Blondin B; Corich V
    Appl Microbiol Biotechnol; 2014 May; 98(9):4119-35. PubMed ID: 24695828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.