These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18628984)

  • 1. Nerve growth factor stimulates interaction of Cayman ataxia protein BNIP-H/Caytaxin with peptidyl-prolyl isomerase Pin1 in differentiating neurons.
    Buschdorf JP; Chew LL; Soh UJ; Liou YC; Low BC
    PLoS One; 2008 Jul; 3(7):e2686. PubMed ID: 18628984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-specific BNIP-2-homology protein Caytaxin relocalises glutaminase to neurite terminals and reduces glutamate levels.
    Buschdorf JP; Li Chew L; Zhang B; Cao Q; Liang FY; Liou YC; Zhou YT; Low BC
    J Cell Sci; 2006 Aug; 119(Pt 16):3337-50. PubMed ID: 16899818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cayman ataxia protein caytaxin is transported by kinesin along neurites through binding to kinesin light chains.
    Aoyama T; Hata S; Nakao T; Tanigawa Y; Oka C; Kawaichi M
    J Cell Sci; 2009 Nov; 122(Pt 22):4177-85. PubMed ID: 19861499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic Aryl sulfotransferase 4A1 interacts with the peptidyl prolyl cis-trans isomerase Pin1.
    Mitchell DJ; Minchin RF
    Mol Pharmacol; 2009 Aug; 76(2):388-95. PubMed ID: 19439498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions.
    Messenger MM; Saulnier RB; Gilchrist AD; Diamond P; Gorbsky GJ; Litchfield DW
    J Biol Chem; 2002 Jun; 277(25):23054-64. PubMed ID: 11940573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BNIP-H Recruits the Cholinergic Machinery to Neurite Terminals to Promote Acetylcholine Signaling and Neuritogenesis.
    Sun J; Pan CQ; Chew TW; Liang F; Burmeister M; Low BC
    Dev Cell; 2015 Sep; 34(5):555-68. PubMed ID: 26343454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding and regulation of the transcription factor NFAT by the peptidyl prolyl cis-trans isomerase Pin1.
    Liu W; Youn HD; Zhou XZ; Lu KP; Liu JO
    FEBS Lett; 2001 May; 496(2-3):105-8. PubMed ID: 11356192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional conservation of phosphorylation-specific prolyl isomerases in plants.
    Yao JL; Kops O; Lu PJ; Lu KP
    J Biol Chem; 2001 Apr; 276(17):13517-23. PubMed ID: 11118438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain.
    Qiao X; Liu Y; Luo L; Chen L; Zhao C; Ai X
    Biochem Biophys Res Commun; 2017 May; 487(2):470-476. PubMed ID: 28431929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Alternative Pin1 Binding and Isomerization Site in the N-Terminus Domain of PSD-95.
    Delgado JY
    Front Mol Neurosci; 2020; 13():31. PubMed ID: 32256312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.
    Sikora KM; Nosavanh LM; Kantheti P; Burmeister M; Hortsch M
    PLoS One; 2012; 7(11):e50570. PubMed ID: 23226316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein.
    Smet C; Wieruszeski JM; Buée L; Landrieu I; Lippens G
    FEBS Lett; 2005 Aug; 579(19):4159-64. PubMed ID: 16024016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative Regulation of Peptidyl-Prolyl Isomerase Activity by Interdomain Contact in Human Pin1.
    Wang X; Mahoney BJ; Zhang M; Zintsmaster JS; Peng JW
    Structure; 2015 Dec; 23(12):2224-2233. PubMed ID: 26602185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active Mek2 as a regulatory scaffold that promotes Pin1 binding to BPGAP1 to suppress BPGAP1-induced acute Erk activation and cell migration.
    Pan CQ; Liou YC; Low BC
    J Cell Sci; 2010 Mar; 123(Pt 6):903-16. PubMed ID: 20179103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pin1 mediates neural-specific activation of the mitochondrial apoptotic machinery.
    Becker EB; Bonni A
    Neuron; 2006 Mar; 49(5):655-62. PubMed ID: 16504941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function.
    Lu PJ; Zhou XZ; Liou YC; Noel JP; Lu KP
    J Biol Chem; 2002 Jan; 277(4):2381-4. PubMed ID: 11723108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pin1-dependent prolyl isomerization modulates the stress-induced phosphorylation of high molecular weight neurofilament protein.
    Rudrabhatla P; Zheng YL; Amin ND; Kesavapany S; Albers W; Pant HC
    J Biol Chem; 2008 Sep; 283(39):26737-47. PubMed ID: 18635547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. APPL1 associates with TrkA and GIPC1 and is required for nerve growth factor-mediated signal transduction.
    Lin DC; Quevedo C; Brewer NE; Bell A; Testa JR; Grimes ML; Miller FD; Kaplan DR
    Mol Cell Biol; 2006 Dec; 26(23):8928-41. PubMed ID: 17000777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide binding induces large scale changes in inter-domain mobility in human Pin1.
    Jacobs DM; Saxena K; Vogtherr M; Bernado P; Pons M; Fiebig KM
    J Biol Chem; 2003 Jul; 278(28):26174-82. PubMed ID: 12686540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIN1 inhibits apoptosis in hepatocellular carcinoma through modulation of the antiapoptotic function of survivin.
    Cheng CW; Chow AK; Pang R; Fok EW; Kwong YL; Tse E
    Am J Pathol; 2013 Mar; 182(3):765-75. PubMed ID: 23333752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.