BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 18629230)

  • 1. Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways.
    Moreno-Sánchez R; Saavedra E; Rodríguez-Enríquez S; Olín-Sandoval V
    J Biomed Biotechnol; 2008; 2008():597913. PubMed ID: 18629230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic control analysis indicates a change of strategy in the treatment of cancer.
    Moreno-Sánchez R; Saavedra E; Rodríguez-Enríquez S; Gallardo-Pérez JC; Quezada H; Westerhoff HV
    Mitochondrion; 2010 Nov; 10(6):626-39. PubMed ID: 20599628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of metabolic pathway modeling.
    Moreno-Sánchez R; Encalada R; Marín-Hernández A; Saavedra E
    FEBS J; 2008 Jul; 275(13):3454-69. PubMed ID: 18510554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation.
    Thomas S; Fell DA
    Eur J Biochem; 1998 Dec; 258(3):956-67. PubMed ID: 9990313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling.
    Saavedra E; González-Chávez Z; Moreno-Sánchez R; Michels PAM
    Curr Med Chem; 2019; 26(36):6652-6671. PubMed ID: 30221599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control analysis as a strategy to identify therapeutic targets, the case of cancer glycolysis.
    Marín-Hernández Á; Saavedra E
    Biosystems; 2023 Sep; 231():104986. PubMed ID: 37506818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Control Analysis for Drug Target Prioritization in Trypanosomatids.
    González-Chávez Z; Vázquez C; Moreno-Sánchez R; Saavedra E
    Methods Mol Biol; 2020; 2116():689-718. PubMed ID: 32221950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Control Analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux.
    Thomas S; Mooney PJ; Burrell MM; Fell DA
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):119-27. PubMed ID: 9078251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of control analysis data using different approaches: modelling and experiments with muscle extract.
    Puigjaner J; Raïs B; Burgos M; Comin B; Ovádi J; Cascante M
    FEBS Lett; 1997 Nov; 418(1-2):47-52. PubMed ID: 9414093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling cancer glycolysis.
    Marín-Hernández A; Gallardo-Pérez JC; Rodríguez-Enríquez S; Encalada R; Moreno-Sánchez R; Saavedra E
    Biochim Biophys Acta; 2011 Jun; 1807(6):755-67. PubMed ID: 21110941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control analysis in the identification of key enzymes driving metabolic adaptations: Towards drug target discovery.
    de Atauri P; Foguet C; Cascante M
    Biosystems; 2023 Sep; 231():104984. PubMed ID: 37506820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flux Control in Glycolysis Varies Across the Tree of Life.
    Orlenko A; Hermansen RA; Liberles DA
    J Mol Evol; 2016 Mar; 82(2-3):146-61. PubMed ID: 26920685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A metabolic control analysis approach to introduce the study of systems in biochemistry: the glycolytic pathway in the red blood cell.
    Angelani CR; Carabias P; Cruz KM; Delfino JM; de Sautu M; Espelt MV; Ferreira-Gomes MS; Gómez GE; Mangialavori IC; Manzi M; Pignataro MF; Saffioti NA; Salvatierra Fréchou DM; Santos J; Schwarzbaum PJ
    Biochem Mol Biol Educ; 2018 Sep; 46(5):502-515. PubMed ID: 30281891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica.
    Saavedra E; Marín-Hernández A; Encalada R; Olivos A; Mendoza-Hernández G; Moreno-Sánchez R
    FEBS J; 2007 Sep; 274(18):4922-40. PubMed ID: 17824961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of metabolic networks based on flux centrality.
    Koschützki D; Junker BH; Schwender J; Schreiber F
    J Theor Biol; 2010 Aug; 265(3):261-9. PubMed ID: 20471988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control limits for accumulation of plant metabolites: brute force is no substitute for understanding.
    Morandini P
    Plant Biotechnol J; 2013 Feb; 11(2):253-67. PubMed ID: 23301840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a rate-limiting step in a metabolic pathway using the kinetic model and in vitro experiment.
    Kitamura S; Shimizu H; Toya Y
    J Biosci Bioeng; 2021 Mar; 131(3):271-276. PubMed ID: 33168471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite change analysis of glycolytic intermediates in tuber tissue of lines of transgenic potato (Solanum tuberosum) overexpressing phosphofructokinase.
    Thomas S; Mooney PJ; Burrell MM; Fell DA
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):111-7. PubMed ID: 9078250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of pathway rate to activities of substrate-cycle enzymes: application to gluconeogenesis and glycolysis.
    Regen DM; Pilkis SJ
    J Theor Biol; 1984 Dec; 111(4):635-58. PubMed ID: 6241274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rationalization of high enzyme concentration in metabolic pathways such as glycolysis.
    Betts GF; Srivastava DK
    J Theor Biol; 1991 Jul; 151(2):155-67. PubMed ID: 1943140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.