These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18629252)

  • 21. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY; Jossinet F; Westhof E
    Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
    Lee JC; Gutell RR
    J Mol Biol; 2004 Dec; 344(5):1225-49. PubMed ID: 15561141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs.
    Sponer JE; Spackova N; Leszczynski J; Sponer J
    J Phys Chem B; 2005 Jun; 109(22):11399-410. PubMed ID: 16852393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated, customizable and efficient identification of 3D base pair modules with BayesPairing.
    Sarrazin-Gendron R; Reinharz V; Oliver CG; Moitessier N; Waldispühl J
    Nucleic Acids Res; 2019 Apr; 47(7):3321-3332. PubMed ID: 30828711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view.
    Sponer JE; Réblova K; Mokdad A; Sychrovský V; Leszczynski J; Sponer J
    J Phys Chem B; 2007 Aug; 111(30):9153-64. PubMed ID: 17602515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures.
    Bohdan DR; Voronina VV; Bujnicki JM; Baulin EF
    Nucleic Acids Res; 2023 Sep; 51(16):8367-8382. PubMed ID: 37471030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB
    J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation.
    Walczak R; Carbon P; Krol A
    RNA; 1998 Jan; 4(1):74-84. PubMed ID: 9436910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E.
    Réblová K; Spacková N; Stefl R; Csaszar K; Koca J; Leontis NB; Sponer J
    Biophys J; 2003 Jun; 84(6):3564-82. PubMed ID: 12770867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploration of pairing constraints identifies a 9 base-pair core within box C/D snoRNA-rRNA duplexes.
    Chen CL; Perasso R; Qu LH; Amar L
    J Mol Biol; 2007 Jun; 369(3):771-83. PubMed ID: 17459411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA structure and dynamics: a base pairing perspective.
    Halder S; Bhattacharyya D
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ribostral: an RNA 3D alignment analyzer and viewer based on basepair isostericities.
    Mokdad A; Leontis NB
    Bioinformatics; 2006 Sep; 22(17):2168-70. PubMed ID: 16820430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.
    Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J
    J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The UA_handle: a versatile submotif in stable RNA architectures.
    Jaeger L; Verzemnieks EJ; Geary C
    Nucleic Acids Res; 2009 Jan; 37(1):215-30. PubMed ID: 19036788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-Watson Crick base pairs might stabilize RNA structural motifs in ribozymes -- a comparative study of group-I intron structures.
    Chandrasekhar K; Malathhi R
    J Biosci; 2003 Sep; 28(5):547-55. PubMed ID: 14517358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs.
    Roll J; Zirbel CL; Sweeney B; Petrov AI; Leontis N
    Nucleic Acids Res; 2016 Jul; 44(W1):W320-7. PubMed ID: 27235417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs.
    Nagaswamy U; Fox GE
    RNA; 2002 Sep; 8(9):1112-9. PubMed ID: 12358430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BPS: a database of RNA base-pair structures.
    Xin Y; Olson WK
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D83-8. PubMed ID: 18845572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical study of the scalar coupling constants across the noncovalent contacts in RNA base pairs: the cis- and trans-watson-crick/sugar edge base pair family.
    Vokacova Z; Sponer J; Sponer JE; Sychrovský V
    J Phys Chem B; 2007 Sep; 111(36):10813-24. PubMed ID: 17713941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.