These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18629580)

  • 1. Comparison of function of created wetlands of two age classes in central Pennsylvania.
    Hoeltje SM; Cole CA
    Environ Manage; 2009 Apr; 43(4):597-608. PubMed ID: 18629580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Losing function through wetland mitigation in central Pennsylvania, USA.
    Hoeltje SM; Cole CA
    Environ Manage; 2007 Mar; 39(3):385-402. PubMed ID: 17265110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of hydrology of wetlands in Pennsylvania and Oregon (USA) as an indicator of transferability of hydrogeomorphic (HGM) functional models between regions.
    Cole CA; Brooks RP; Shaffer PW; Kentula ME
    Environ Manage; 2002 Aug; 30(2):265-78. PubMed ID: 12105766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling hydrological effects of wetland restoration: a differentiated view.
    Staes J; Rubarenzya MH; Meire P; Willems P
    Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid assessment of urban wetlands: do hydrogeomorphic classification and reference criteria work?
    Stander EK; Ehrenfeld JG
    Environ Manage; 2009 Apr; 43(4):725-42. PubMed ID: 18850244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.
    Means MM; Ahn C; Korol AR; Williams LD
    J Environ Manage; 2016 Jan; 165():133-139. PubMed ID: 26431640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Community structure and quality after 10 years in two central Ohio mitigation bank wetlands.
    Spieles DJ; Coneybeer M; Horn J
    Environ Manage; 2006 Nov; 38(5):837-52. PubMed ID: 16841175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing natural and anthropogenic variability in wetland structure for two hydrogeomorphic riverine wetland subclasses.
    Dvorett D; Bidwell J; Davis C; DuBois C
    Environ Manage; 2013 Oct; 52(4):1009-22. PubMed ID: 23928808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.
    McLaughlin DL; Cohen MJ
    Ecol Appl; 2013 Oct; 23(7):1619-31. PubMed ID: 24261044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach for hydrologic performance standards in wetland mitigation.
    Sueltenfuss JP; Cooper DJ
    J Environ Manage; 2019 Feb; 231():1154-1163. PubMed ID: 30602240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the basic assumption of the hydrogeomorphic approach to assessing wetland functions.
    Hruby T
    Environ Manage; 2001 May; 27(5):749-61. PubMed ID: 11334162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil development and establishment of carbon-based properties in created freshwater marshes.
    Hossler K; Bouchard V
    Ecol Appl; 2010 Mar; 20(2):539-53. PubMed ID: 20405805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental framework for a desktop hydrogeomorphic wetland functional assessment derived from field-based data.
    Backhaus PJ; Wardrop DH; McCarty GW; Brooks RP
    Environ Monit Assess; 2024 Jan; 196(2):217. PubMed ID: 38286914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change.
    Sasmito SD; Sillanpää M; Hayes MA; Bachri S; Saragi-Sasmito MF; Sidik F; Hanggara BB; Mofu WY; Rumbiak VI; Hendri ; Taberima S; Suhaemi ; Nugroho JD; Pattiasina TF; Widagti N; Barakalla ; Rahajoe JS; Hartantri H; Nikijuluw V; Jowey RN; Heatubun CD; Zu Ermgassen P; Worthington TA; Howard J; Lovelock CE; Friess DA; Hutley LB; Murdiyarso D
    Glob Chang Biol; 2020 May; 26(5):3028-3039. PubMed ID: 32112604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction of healthy wetland ecosphere in estuarine delta: Theory and method.].
    Han GX; Niu ZG; Luan ZQ; Wang GM; Zhang LW; Guan B
    Ying Yong Sheng Tai Xue Bao; 2018 Aug; 29(8):2787-2796. PubMed ID: 30182621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils.
    Argiroff WA; Zak DR; Lanser CM; Wiley MJ
    Microb Ecol; 2017 Apr; 73(3):630-644. PubMed ID: 27807645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.
    Rooney RC; Foote L; Krogman N; Pattison JK; Wilson MJ; Bayley SE
    Water Res; 2015 Apr; 73():17-28. PubMed ID: 25644625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine-scale spatial homogenization of microbial habitats: a multivariate index of headwater wetland complex condition.
    Moon JB; Wardrop DH; Smithwick EAH; Naithani KJ
    Ecol Appl; 2019 Jan; 29(1):e01816. PubMed ID: 30326550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.
    Wolf KL; Noe GB; Ahn C
    J Environ Qual; 2013 Jul; 42(4):1245-55. PubMed ID: 24216376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetland features and landscape context predict the risk of wetland habitat loss.
    Gutzwiller KJ; Flather CH
    Ecol Appl; 2011 Apr; 21(3):968-82. PubMed ID: 21639059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.