These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18629791)

  • 1. Effects of kinetics of adsorption and coalescence on continuous foam concentration of proteins: Comparison of experimental results with model predictions.
    Uraizee F; Narsimhan G
    Biotechnol Bioeng; 1996 Aug; 51(4):384-98. PubMed ID: 18629791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foam fractionation of globular proteins.
    Brown L; Narsimhan G; Wankat PC
    Biotechnol Bioeng; 1990 Nov; 36(9):947-59. PubMed ID: 18597295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and purification of protease from human placenta by foam fractionation.
    Sarkar P; Bhattacharya P; Mukherjea RN; Mukherjea M
    Biotechnol Bioeng; 1987 Jun; 29(8):934-40. PubMed ID: 18576542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of liquid holdup profile in a standing protein stabilized foam.
    Wang Z; Narsimhan G
    J Colloid Interface Sci; 2004 Dec; 280(1):224-33. PubMed ID: 15476794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Water-Soluble Proteins onto Bubbles in Continuous Foam Separation.
    Maruyama H; Suzuki A; Seki H
    J Colloid Interface Sci; 2000 Apr; 224(1):76-83. PubMed ID: 10708495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model for drop coalescence in a locally isotropic turbulent flow field.
    Narsimhan G
    J Colloid Interface Sci; 2004 Apr; 272(1):197-209. PubMed ID: 14985038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of bovine serum albumin by foam fractionation with wire gauze structured packing column.
    Li ZQ; Zheng HJ; Wu ZL
    Appl Biochem Biotechnol; 2015 Jan; 175(1):502-12. PubMed ID: 25315386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bubble size on foam fractionation of ovalbumin.
    Du L; Prokop A; Tanner RD
    Appl Biochem Biotechnol; 2002; 98-100():1075-91. PubMed ID: 12018231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between animal cells and gas bubbles: The influence of serum and pluronic F68 on the physical properties of the bubble surface.
    Jordan M; Eppenberger HM; Sucker H; Widmer F; Einsele A
    Biotechnol Bioeng; 1994 Mar; 43(6):446-54. PubMed ID: 18615740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins.
    Zhang Z; Dalgleish DG; Goff HD
    Colloids Surf B Biointerfaces; 2004 Mar; 34(2):113-21. PubMed ID: 15261081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of trace Cd2+ using continuous multistage ion foam fractionation: part I--The effect of feed SDS/Cd molar ratio.
    Rujirawanich V; Chavadej S; O'Haver JH; Rujiravanit R
    J Hazard Mater; 2010 Oct; 182(1-3):812-9. PubMed ID: 20667426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein.
    Shi Q; Zhou Y; Sun Y
    Biotechnol Prog; 2005; 21(2):516-23. PubMed ID: 15801792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2011 Jan; 27(1):250-63. PubMed ID: 21128607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass transfer of volatile organic carbons through aqueous foams.
    Gautam PS; Mohanty KK
    J Colloid Interface Sci; 2004 May; 273(2):611-25. PubMed ID: 15082401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarized light based scheme to monitor column performance in a continuous foam fractionation column.
    Swamy JN; Crofcheck CL; Mengüç M
    J Biol Eng; 2010 Apr; 4():5. PubMed ID: 20398336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling a protein foam fractionation process.
    Du L; Loha V; Tanner RD
    Appl Biochem Biotechnol; 2000; 84-86():1087-99. PubMed ID: 10849860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High efficiency enrichment of total and single whey proteins by pH controlled foam fractionation.
    Ekici P; Backleh-Sohrt M; Parlar H
    Int J Food Sci Nutr; 2005 May; 56(3):223-9. PubMed ID: 16009637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of denaturation by preheating on the foam fractionation behavior of ovalbumin.
    Du L; Prokop A; Tanner RD
    J Colloid Interface Sci; 2002 Apr; 248(2):487-92. PubMed ID: 16290554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.