BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 18629824)

  • 1. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant.
    Hoh CY; Cord-Ruwisch R
    Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MassKinetics: a theoretical model of mass spectra incorporating physical processes, reaction kinetics and mathematical descriptions.
    Drahos L; Vékey K
    J Mass Spectrom; 2001 Mar; 36(3):237-63. PubMed ID: 11312517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new graphical method for determining parameters in Michaelis-Menten-type kinetics for enzymatic lactose hydrolysis.
    Yang ST; Okos MR
    Biotechnol Bioeng; 1989 Sep; 34(6):763-73. PubMed ID: 18588163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic constraints on H2-dependent terminal electron accepting processes in anoxic environments: a review of observations and model approaches.
    Heimann A; Jakobsen R; Blodau C
    Environ Sci Technol; 2010 Jan; 44(1):24-33. PubMed ID: 20039730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic study of lipase-catalyzed reversible kinetic resolution involving verification at miniplant-scale.
    Berendsen WR; Gendrot G; Freund A; Reuss M
    Biotechnol Bioeng; 2006 Dec; 95(5):883-92. PubMed ID: 16937404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Stationary kinetics of multisubstrate enzymatic reactions. Inhibition by reaction products, reversible and irreversible inhibitors].
    Vrzheshch PV
    Biokhimiia; 1988 Oct; 53(10):1704-11. PubMed ID: 3233227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal designs for Michaelis-Menten kinetic studies.
    Matthews JN; Allcock GC
    Stat Med; 2004 Feb; 23(3):477-91. PubMed ID: 14748040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dependence of enzyme activity on temperature: determination and validation of parameters.
    Peterson ME; Daniel RM; Danson MJ; Eisenthal R
    Biochem J; 2007 Mar; 402(2):331-7. PubMed ID: 17092210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic models to investigate energy limited anaerobic ecosystems.
    Rodríguez J; Premier GC; Guwy AJ; Dinsdale R; Kleerebezem R
    Water Sci Technol; 2009; 60(7):1669-75. PubMed ID: 19809129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors.
    Belfiore LA; Bonani W; Leoni M; Belfiore CJ
    Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge.
    Esposito G; Frunzo L; Panico A; d'Antonio G
    Water Sci Technol; 2008; 58(7):1513-9. PubMed ID: 18957767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.
    Zhang F; Yeh GT; Parker JC; Brooks SC; Pace MN; Kim YJ; Jardine PM; Watson DB
    J Contam Hydrol; 2007 Jun; 92(1-2):10-32. PubMed ID: 17229488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic simulation of reactive separations in capillary electrophoresis.
    Newman CI; McGuffin VL
    Electrophoresis; 2005 Feb; 26(3):537-47. PubMed ID: 15690455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relations between biochemical thermodynamics and biochemical kinetics.
    Alberty RA
    Biophys Chem; 2006 Oct; 124(1):11-7. PubMed ID: 16766115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved rearrangement of the integrated Michaelis-Menten equation for calculating in vivo kinetics of transport and metabolism.
    Russell RW; Drane JW
    J Dairy Sci; 1992 Dec; 75(12):3455-64. PubMed ID: 1474212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and kinetic parameters of lipase-catalyzed ester hydrolysis in biphasic systems with varying organic solvents.
    van Tol JB; Jongejan JA; Duine JA; Kierkels HG; Geladé EF; Mosterd F; van der Tweel WJ; Kamphuis J
    Biotechnol Bioeng; 1995 Nov; 48(3):179-89. PubMed ID: 18623476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.