BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18629856)

  • 1. Biomedical applications of degradable polyphosphazenes.
    Schacht E; Vandorpe J; Dejardin S; Lemmouchi Y; Seymour L
    Biotechnol Bioeng; 1996 Oct; 52(1):102-8. PubMed ID: 18629856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable polymers. II. Degradation characteristics of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(9):601-11. PubMed ID: 1391407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable polymers. I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(8):511-20. PubMed ID: 1633224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide).
    Vandorpe J; Schacht E; Stolnik S; Garnett MC; Davies MC; Illum L; Davis SS
    Biotechnol Bioeng; 1996 Oct; 52(1):89-95. PubMed ID: 18629854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of polyaminophosphazenes: effects of hydrolytic environment and polymer processing.
    Andrianov AK; Marin A
    Biomacromolecules; 2006 May; 7(5):1581-6. PubMed ID: 16677042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).
    Ogueri KS; Allcock HR; Laurencin CT
    Prog Polym Sci; 2019 Nov; 98():. PubMed ID: 31551636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes.
    Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications.
    Greish YE; Bender JD; Lakshmi S; Brown PW; Allcock HR; Laurencin CT
    Biomaterials; 2005 Jan; 26(1):1-9. PubMed ID: 15193876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends.
    Krogman NR; Singh A; Nair LS; Laurencin CT; Allcock HR
    Biomacromolecules; 2007 Apr; 8(4):1306-12. PubMed ID: 17338563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine-bearing polyphosphazenes.
    Allcock HR; Singh A; Ambrosio AM; Laredo WR
    Biomacromolecules; 2003; 4(6):1646-53. PubMed ID: 14606891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.
    Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z
    Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable polyphosphazenes for drug delivery applications.
    Lakshmi S; Katti DS; Laurencin CT
    Adv Drug Deliv Rev; 2003 Apr; 55(4):467-82. PubMed ID: 12706046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable biodegradable hydrogels.
    Nguyen MK; Lee DS
    Macromol Biosci; 2010 Jun; 10(6):563-79. PubMed ID: 20196065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, Physicochemical Analysis, and Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials.
    Ogueri KS; Escobar Ivirico JL; Li Z; Blumenfield RH; Allcock HR; Laurencin CT
    ACS Appl Polym Mater; 2019 Jun; 1(6):1568-1578. PubMed ID: 32699835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone.
    Daniels AU; Chang MK; Andriano KP
    J Appl Biomater; 1990; 1(1):57-78. PubMed ID: 10148987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery.
    Teasdale I; Brüggemann O
    Polymers (Basel); 2013 Mar; 5(1):161-187. PubMed ID: 24729871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and optical properties of sulfur-containing monomers and cyclomatrix polyphosphazenes.
    Fushimi T; Allcock HR
    Dalton Trans; 2010 Jun; 39(22):5349-55. PubMed ID: 20442910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-Soluble, Biocompatible Polyphosphazenes with Controllable and pH-Promoted Degradation Behavior.
    Wilfert S; Iturmendi A; Schoefberger W; Kryeziu K; Heffeter P; Berger W; Brüggemann O; Teasdale I
    J Polym Sci A Polym Chem; 2014 Jan; 52(2):287-294. PubMed ID: 24729657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.