BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 18629911)

  • 1. Growth and respiration of Petunia hybrida cells in chemostat cultures: A comparison of glucose-limited and nitrate-limited cultures.
    de Gucht LP; van der Plas LH
    Biotechnol Bioeng; 1996 Nov; 52(3):412-22. PubMed ID: 18629911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth kinetics of glucose-limited petunia hybrida cells in chemostat cultures: Determination of experimental values for growth and maintenance parameters.
    de Gucht LP; van der Plas LH
    Biotechnol Bioeng; 1995 Jul; 47(1):42-52. PubMed ID: 18623365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth kinetics of vitis vinifera cell suspension cultures: I. Shake flask cultures.
    Pépin MF; Archambault J; Chavarie C; Cormier F
    Biotechnol Bioeng; 1995 Jul; 47(2):131-8. PubMed ID: 18623385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-cell-density cultivation of yeasts on disaccharides in oxygen-limited batch cultures.
    Castrillo JI; Kaliterna J; Weusthuis RA; van Dijken JP; Pronk JT
    Biotechnol Bioeng; 1996 Mar; 49(6):621-8. PubMed ID: 18626857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture.
    Del Río E; Acién FG; García-Malea MC; Rivas J; Molina-Grima E; Guerrero MG
    Biotechnol Bioeng; 2005 Sep; 91(7):808-15. PubMed ID: 15937954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation.
    Verduyn C; Postma E; Scheffers WA; Van Dijken JP
    Yeast; 1992 Jul; 8(7):501-17. PubMed ID: 1523884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and stoichiometry of a Catharanthus roseus cell suspension culture grown under nitrogen-limiting conditions.
    Rho D; André G
    Biotechnol Bioeng; 1991 Sep; 38(6):579-87. PubMed ID: 18604877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate.
    Sampaio FC; Torre P; Passos FM; Perego P; Passos FJ; Converti A
    Biotechnol Prog; 2004; 20(6):1641-50. PubMed ID: 15575694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry.
    Taymaz-Nikerel H; Borujeni AE; Verheijen PJ; Heijnen JJ; van Gulik WM
    Biotechnol Bioeng; 2010 Oct; 107(2):369-81. PubMed ID: 20506321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures.
    Adamberg K; Lahtvee PJ; Valgepea K; Abner K; Vilu R
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):219-26. PubMed ID: 19184516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in respiratory cost at high growth temperature is attributed to high protein turnover cost in Petunia x hybrida petals.
    Hachiya T; Terashima I; Noguchi K
    Plant Cell Environ; 2007 Oct; 30(10):1269-83. PubMed ID: 17727417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental denitrification kinetic studies with Pseudomonas denitrificans.
    Wang JH; Baltzis BC; Lewandowski GA
    Biotechnol Bioeng; 1995 Jul; 47(1):26-41. PubMed ID: 18623364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metabolic model for biological phosphorus removal by denitrifying organisms.
    Kuba T; Murnleitner E; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1996 Dec; 52(6):685-95. PubMed ID: 18629947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased biological hydrogen production with reduced organic loading.
    Van Ginkel SW; Logan B
    Water Res; 2005 Oct; 39(16):3819-26. PubMed ID: 16129472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics and physiology of stipitatic acid and gluconate production by carbon sufficient cultures of Penicillium stipitatum growing in continuous culture.
    Linton JD; Austin RM; Haugh DE
    Biotechnol Bioeng; 1984 Dec; 26(12):1455-64. PubMed ID: 18551677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture.
    Withers JM; Swift RJ; Wiebe MG; Robson GD; Punt PJ; van den Hondel CA; Trinci AP
    Biotechnol Bioeng; 1998 Aug; 59(4):407-18. PubMed ID: 10099354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcalorimetric studies of Klebsiella aerogenes grown in chemostat culture. 2 C-limited and C-sufficient cultures.
    James AM; Djavan A
    Microbios; 1981; 30(121-122):163-70. PubMed ID: 7031438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate and energy costs of the production of exocellular enzymes by Bacillus licheniformis.
    Frankena J; Van Verseveld HW; Stouthamer AH
    Biotechnol Bioeng; 1988 Sep; 32(6):803-12. PubMed ID: 18587788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.