These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 18629927)

  • 1. Selective extraction using preferential transport through adsorptive membranes.
    Agrawal A; Burns MA
    Biotechnol Bioeng; 1996 Dec; 52(5):539-48. PubMed ID: 18629927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of membrane-based preferential transport to whole broth processing.
    Agrawal A; Burns MA
    Biotechnol Bioeng; 1997 Aug; 55(4):581-91. PubMed ID: 18636569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of amniotic fluid volume: intramembranous solute and volume fluxes in late gestation fetal sheep.
    Brace RA; Vermin ML; Huijssoon E
    Am J Obstet Gynecol; 2004 Sep; 191(3):837-46. PubMed ID: 15467551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on electrochemical characterization and performance prediction of cellulose acetate and Zeocarb-225 composite membranes in aqueous NaCl solutions.
    Tiwari AK; Ahmad S
    J Colloid Interface Sci; 2006 Jun; 298(1):274-81. PubMed ID: 16499917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes.
    Branco LC; Crespo JG; Afonso CA
    Chemistry; 2002 Sep; 8(17):3865-71. PubMed ID: 12203281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.
    Kim TU; Drewes JE; Scott Summers R; Amy GL
    Water Res; 2007 Sep; 41(17):3977-88. PubMed ID: 17631378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection.
    Darvishmanesh S; Degrève J; Van der Bruggen B
    Phys Chem Chem Phys; 2010 Oct; 12(40):13333-42. PubMed ID: 20842303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Evaluation of the concentration difference determining the membrane transport in concentration polarization conditions].
    Jasik-Slezak J; Olszówka K; Slezak A
    Polim Med; 2010; 40(3):55-61. PubMed ID: 21114053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein fractionation using fast flow immobilized metal chelate affinity membranes.
    Serafica GC; Belfort G; Pimbley J
    Biotechnol Bioeng; 1994 Jan; 43(1):21-36. PubMed ID: 18613307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model.
    Chaudhari LB; Murthy ZV
    J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zonal rate model for stacked membrane chromatography. I: characterizing solute dispersion under flow-through conditions.
    Francis P; von Lieres E; Haynes CA
    J Chromatogr A; 2011 Aug; 1218(31):5071-8. PubMed ID: 21703630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent diffusion of lysozyme in aqueous calcium chloride. The role of common-ion effects and protein-salt preferential interactions.
    Annunziata O; Paduano L; Albright JG
    J Phys Chem B; 2007 Sep; 111(35):10591-8. PubMed ID: 17696467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated fragmentation of human IgG and purification of Fab using a reactant adsorptive membrane bioreactor separator system.
    Yu D; Ghosh R
    Biotechnol Bioeng; 2009 Sep; 104(1):152-61. PubMed ID: 19408316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applied tracer tests in fractured rock: Can we predict natural gradient solute transport more accurately than fracture and matrix parameters?
    Weatherill D; Cook PG; Simmons CT; Robinson NI
    J Contam Hydrol; 2006 Dec; 88(3-4):289-305. PubMed ID: 16959371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes.
    Yoon J; Amy G; Yoon Y
    Water Sci Technol; 2005; 51(6-7):327-34. PubMed ID: 16003993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes.
    She Q; Jin X; Li Q; Tang CY
    Water Res; 2012 May; 46(7):2478-86. PubMed ID: 22386887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling of elution curves for a protein mixture in ion exchange chromatography applied to high protein concentration.
    Orellana CA; Shene C; Asenjo JA
    Biotechnol Bioeng; 2009 Oct; 104(3):572-81. PubMed ID: 19593757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations.
    Lu JG
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1613-20. PubMed ID: 15547973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.