These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 18630511)
1. Targeting of CDC20 via small interfering RNA causes enhancement of the cytotoxicity of chemoradiation. Taniguchi K; Momiyama N; Ueda M; Matsuyama R; Mori R; Fujii Y; Ichikawa Y; Endo I; Togo S; Shimada H Anticancer Res; 2008; 28(3A):1559-63. PubMed ID: 18630511 [TBL] [Abstract][Full Text] [Related]
2. Introduction of a survivin gene-specific small inhibitory RNA inhibits growth of pancreatic cancer cells. Tsuji N; Asanuma K; Kobayashi D; Yagihashi A; Watanabe N Anticancer Res; 2005; 25(6B):3967-72. PubMed ID: 16309185 [TBL] [Abstract][Full Text] [Related]
3. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Hata T; Furukawa T; Sunamura M; Egawa S; Motoi F; Ohmura N; Marumoto T; Saya H; Horii A Cancer Res; 2005 Apr; 65(7):2899-905. PubMed ID: 15805292 [TBL] [Abstract][Full Text] [Related]
4. CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Kidokoro T; Tanikawa C; Furukawa Y; Katagiri T; Nakamura Y; Matsuda K Oncogene; 2008 Mar; 27(11):1562-71. PubMed ID: 17873905 [TBL] [Abstract][Full Text] [Related]
5. Suppression of growth of pancreatic cancer cell and expression of vascular endothelial growth factor by gene silencing with RNA interference. Wang J; Shi YQ; Yi J; Ye S; Wang LM; Xu YP; He M; Kong XM J Dig Dis; 2008 Nov; 9(4):228-37. PubMed ID: 18959596 [TBL] [Abstract][Full Text] [Related]
6. Knockdown of hTERT by SiRNA suppresses growth of Capan-2 human pancreatic cancer cell via the inhibition of expressions of Bcl-2 and COX-2. Zhong YQ; Xia ZS; Fu YR; Zhu ZH J Dig Dis; 2010 Jun; 11(3):176-84. PubMed ID: 20579221 [TBL] [Abstract][Full Text] [Related]
7. Adenovirus-mediated siRNA targeting Mcl-1 gene increases radiosensitivity of pancreatic carcinoma cells in vitro and in vivo. Guoan X; Hanning W; Kaiyun C; Hao L Surgery; 2010 Apr; 147(4):553-61. PubMed ID: 20004446 [TBL] [Abstract][Full Text] [Related]
8. Improvement in radiosensitivity using small interfering RNA targeting p53R2 in esophageal squamous cell carcinoma. Yokomakura N; Natsugoe S; Okumura H; Ikeda R; Uchikado Y; Mataki Y; Takatori H; Matsumoto M; Owaki T; Ishigami S; Aikou T Oncol Rep; 2007 Sep; 18(3):561-7. PubMed ID: 17671702 [TBL] [Abstract][Full Text] [Related]
10. A small interfering RNA targeting osteopontin as gastric cancer therapeutics. Gong M; Lu Z; Fang G; Bi J; Xue X Cancer Lett; 2008 Dec; 272(1):148-59. PubMed ID: 18694621 [TBL] [Abstract][Full Text] [Related]
11. MUC1 Knockdown With RNA Interference Inhibits Pancreatic Cancer Growth. Yuan Z; Liu X; Wong S; Machan JT; Chung MA J Surg Res; 2009 Nov; 157(1):e39-46. PubMed ID: 19482310 [TBL] [Abstract][Full Text] [Related]
13. [Activation of multiple tumor suppressor genes by MBD1 siRNA in pancreatic cancer cell line BxPC-3]. Xu J; Liu C; Yu XJ; Jin C; Fu DL; Ni QX Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(28):1948-51. PubMed ID: 19062732 [TBL] [Abstract][Full Text] [Related]
14. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Pirollo KF; Rait A; Zhou Q; Hwang SH; Dagata JA; Zon G; Hogrefe RI; Palchik G; Chang EH Cancer Res; 2007 Apr; 67(7):2938-43. PubMed ID: 17409398 [TBL] [Abstract][Full Text] [Related]
15. Growth inhibition of a tongue squamous cell carcinoma cell line (Tca8113) in vitro and in vivo via siRNA-mediated down-regulation of skp2. Fang L; Hu Q; Hua Z; Li S; Dong W Int J Oral Maxillofac Surg; 2008 Sep; 37(9):847-52. PubMed ID: 18620845 [TBL] [Abstract][Full Text] [Related]
16. The ABCC4 gene is a promising target for pancreatic cancer therapy. Zhang Z; Wang J; Shen B; Peng C; Zheng M Gene; 2012 Jan; 491(2):194-9. PubMed ID: 21989485 [TBL] [Abstract][Full Text] [Related]
17. Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Morgan-Lappe SE; Tucker LA; Huang X; Zhang Q; Sarthy AV; Zakula D; Vernetti L; Schurdak M; Wang J; Fesik SW Cancer Res; 2007 May; 67(9):4390-8. PubMed ID: 17483353 [TBL] [Abstract][Full Text] [Related]
18. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Aleku M; Schulz P; Keil O; Santel A; Schaeper U; Dieckhoff B; Janke O; Endruschat J; Durieux B; Röder N; Löffler K; Lange C; Fechtner M; Möpert K; Fisch G; Dames S; Arnold W; Jochims K; Giese K; Wiedenmann B; Scholz A; Kaufmann J Cancer Res; 2008 Dec; 68(23):9788-98. PubMed ID: 19047158 [TBL] [Abstract][Full Text] [Related]
19. Tubulin-targeted drug action: functional significance of class ii and class IVb beta-tubulin in vinca alkaloid sensitivity. Gan PP; Kavallaris M Cancer Res; 2008 Dec; 68(23):9817-24. PubMed ID: 19047161 [TBL] [Abstract][Full Text] [Related]
20. Wilms' tumour gene 1 (WT1) as a target in curcumin treatment of pancreatic cancer cells. Glienke W; Maute L; Wicht J; Bergmann L Eur J Cancer; 2009 Mar; 45(5):874-80. PubMed ID: 19196508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]