BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18630882)

  • 1. Substituent effect on the efficiency of desulfurizative rearrangement of allylic disulfides.
    Li Z; Wang C; Fu Y; Guo QX; Liu L
    J Org Chem; 2008 Aug; 73(16):6127-36. PubMed ID: 18630882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allylic disulfide rearrangement and desulfurization: mild, electrophile-free thioether formation from thiols.
    Crich D; Brebion F; Krishnamurthy V
    Org Lett; 2006 Aug; 8(16):3593-6. PubMed ID: 16869668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of thiolate-disulfide interchange reactions in biochemistry.
    Bach RD; Dmitrenko O; Thorpe C
    J Org Chem; 2008 Jan; 73(1):12-21. PubMed ID: 18052192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction pathways and free energy barriers for alkaline hydrolysis of insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds: electrostatic and steric effects.
    Xiong Y; Zhan CG
    J Org Chem; 2004 Nov; 69(24):8451-8. PubMed ID: 15549820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dechalcogenative allylic selenosulfide and disulfide rearrangements: complementary methods for the formation of allylic sulfides in the absence of electrophiles. Scope, limitations, and application to the functionalization of unprotected peptides in aqueous media.
    Crich D; Krishnamurthy V; Brebion F; Karatholuvhu M; Subramanian V; Hutton TK
    J Am Chem Soc; 2007 Aug; 129(33):10282-94. PubMed ID: 17655306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxidation of 2-pyrimidinethiols and theoretical study of their dimers, disulfides, sulfenyl radicals, and tautomers.
    Freeman F; Po HN; Ho TS; Wang X
    J Phys Chem A; 2008 Feb; 112(7):1643-55. PubMed ID: 18220373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver-mediated allylic disulfide rearrangement for conjugation of thiols in protic media.
    Crich D; Subramanian V; Karatholuvhu M
    J Org Chem; 2009 Dec; 74(24):9422-7. PubMed ID: 19911776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of the detailed mechanism of native chemical ligation reactions.
    Wang C; Guo QX; Fu Y
    Chem Asian J; 2011 May; 6(5):1241-51. PubMed ID: 21365769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phosphorimidate rearrangement for the facile and selective preparation of allylic amines.
    Chen B; Mapp AK
    J Am Chem Soc; 2004 May; 126(17):5364-5. PubMed ID: 15113200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer to sulfides and disulfides: intrinsic barriers and relationship between heterogeneous and homogeneous electron-transfer kinetics.
    Meneses AB; Antonello S; Arévalo MC; González CC; Sharma J; Wallette AN; Workentin MS; Maran F
    Chemistry; 2007; 13(28):7983-95. PubMed ID: 17616962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction.
    Koti Ainavarapu SR; Wiita AP; Dougan L; Uggerud E; Fernandez JM
    J Am Chem Soc; 2008 May; 130(20):6479-87. PubMed ID: 18433129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetry and non-adiabaticity in fragmentation of disulfide bonds upon electron capture.
    Gámez JA; Serrano-Andrés L; Yáñez M
    Chemphyschem; 2010 Aug; 11(12):2530-8. PubMed ID: 20632359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodium-catalyzed substitution reaction of aryl fluorides with disulfides: p-orientation in the polyarylthiolation of polyfluorobenzenes.
    Arisawa M; Suzuki T; Ishikawa T; Yamaguchi M
    J Am Chem Soc; 2008 Sep; 130(37):12214-5. PubMed ID: 18722437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy calculations on disulfide bridges reduction in proteins by combining ab initio and molecular mechanics methods.
    David C; Enescu M
    J Phys Chem B; 2010 Mar; 114(8):3020-7. PubMed ID: 20131764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the mechanism and rate constant of the B + CO2 reaction.
    Poully B; Bergeat A; Hannachi Y
    J Phys Chem A; 2008 Sep; 112(35):8148-53. PubMed ID: 18698740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of thiolate-disulfide exchange: addition-elimination or effectively S(N)2? Effect of a shallow intermediate in gas-phase direct dynamics simulations.
    Paranjothy M; Siebert MR; Hase WL; Bachrach SM
    J Phys Chem A; 2012 Nov; 116(47):11492-9. PubMed ID: 23116226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the disulfide bond and chalcogen-chalcogen interactions: an experimental (FTICR) and computational study.
    Esseffar M; Herrero R; Quintanilla E; Dávalos JZ; Jiménez P; Abboud JL; Yáñez M; Mó O
    Chemistry; 2007; 13(6):1796-803. PubMed ID: 17124711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the peripheral disulfide bridge substituent effects on the antioxidant properties of naphthyridine diol derivatives.
    Yu A; Wang J; Xue X; Wang Y
    J Phys Chem A; 2010 Jan; 114(2):1008-16. PubMed ID: 20000581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing sigmatropic shift rearrangements in excited allyl radicals.
    Stranges D; O'Keeffe P; Scotti G; Di Santo R; Houston PL
    J Chem Phys; 2008 Apr; 128(15):151101. PubMed ID: 18433182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a sandwich-structure assisted, relatively long-lived sulfur-centered three-electron bonded radical anion in the reduction of a bis(1-substituted-uracilyl) disulfide in aqueous solution.
    Wenska G; Filipiak P; Asmus KD; Bobrowski K; Koput J; Marciniak B
    J Phys Chem B; 2008 Aug; 112(32):10045-53. PubMed ID: 18646807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.