BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18630893)

  • 1. Identification and validation of human DNA ligase inhibitors using computer-aided drug design.
    Zhong S; Chen X; Zhu X; Dziegielewska B; Bachman KE; Ellenberger T; Ballin JD; Wilson GM; Tomkinson AE; MacKerell AD
    J Med Chem; 2008 Aug; 51(15):4553-62. PubMed ID: 18630893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair.
    Chen X; Zhong S; Zhu X; Dziegielewska B; Ellenberger T; Wilson GM; MacKerell AD; Tomkinson AE
    Cancer Res; 2008 May; 68(9):3169-77. PubMed ID: 18451142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I.
    Srivastava SK; Dube D; Tewari N; Dwivedi N; Tripathi RP; Ramachandran R
    Nucleic Acids Res; 2005; 33(22):7090-101. PubMed ID: 16361267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human DNA ligase I completely encircles and partially unwinds nicked DNA.
    Pascal JM; O'Brien PJ; Tomkinson AE; Ellenberger T
    Nature; 2004 Nov; 432(7016):473-8. PubMed ID: 15565146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and Optimization of NAD+-Dependent DNA Ligase Inhibitors as Novel Antibacterial Compounds.
    Bi F; Ma R; Ma S
    Curr Pharm Des; 2017; 23(14):2117-2130. PubMed ID: 27784238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis.
    Singh V; Somvanshi P
    Protein Pept Lett; 2010 Feb; 17(2):269-76. PubMed ID: 20214650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacophore-based screening and identification of novel human ligase I inhibitors with potential anticancer activity.
    Krishna S; Singh DK; Meena S; Datta D; Siddiqi MI; Banerjee D
    J Chem Inf Model; 2014 Mar; 54(3):781-92. PubMed ID: 24593844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: novel structure-function relationship and identification of a specific inhibitor.
    Srivastava SK; Dube D; Kukshal V; Jha AK; Hajela K; Ramachandran R
    Proteins; 2007 Oct; 69(1):97-111. PubMed ID: 17557328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part 2: 4-amino-pyrido[2,3-d]pyrimidin-5(8H)-ones.
    Wang T; Duncan L; Gu W; O'Dowd H; Wei Y; Perola E; Parsons J; Gross CH; Moody CS; Arends SJ; Charifson PS
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3699-703. PubMed ID: 22560470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents.
    Gupta S; Maurya P; Upadhyay A; Kushwaha P; Krishna S; Siddiqi MI; Sashidhara KV; Banerjee D
    Eur J Med Chem; 2018 Jan; 143():1981-1996. PubMed ID: 29146133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors.
    Srivastava SK; Tripathi RP; Ramachandran R
    J Biol Chem; 2005 Aug; 280(34):30273-81. PubMed ID: 15901723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of human DNA ligase I regulates its interaction with replication factor C and its participation in DNA replication and DNA repair.
    Vijayakumar S; Dziegielewska B; Levin DS; Song W; Yin J; Yang A; Matsumoto Y; Bermudez VP; Hurwitz J; Tomkinson AE
    Mol Cell Biol; 2009 Apr; 29(8):2042-52. PubMed ID: 19223468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part I: aminoalkoxypyrimidine carboxamides.
    Gu W; Wang T; Maltais F; Ledford B; Kennedy J; Wei Y; Gross CH; Parsons J; Duncan L; Arends SJ; Moody C; Perola E; Green J; Charifson PS
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3693-8. PubMed ID: 22560473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones.
    Brötz-Oesterhelt H; Knezevic I; Bartel S; Lampe T; Warnecke-Eberz U; Ziegelbauer K; Häbich D; Labischinski H
    J Biol Chem; 2003 Oct; 278(41):39435-42. PubMed ID: 12867414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification through structure-based methods of a bacterial NAD(+)-dependent DNA ligase inhibitor that avoids known resistance mutations.
    Murphy-Benenato K; Wang H; McGuire HM; Davis HE; Gao N; Prince DB; Jahic H; Stokes SS; Boriack-Sjodin PA
    Bioorg Med Chem Lett; 2014 Jan; 24(1):360-6. PubMed ID: 24287382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human DNA ligases: a comprehensive new look for cancer therapy.
    Singh DK; Krishna S; Chandra S; Shameem M; Deshmukh AL; Banerjee D
    Med Res Rev; 2014 May; 34(3):567-95. PubMed ID: 23959747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of small molecular weight inhibitors of Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) via in silico database screening combined with experimental assay.
    Yu WM; Guvench O; Mackerell AD; Qu CK
    J Med Chem; 2008 Dec; 51(23):7396-404. PubMed ID: 19007293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity.
    Stokes SS; Huynh H; Gowravaram M; Albert R; Cavero-Tomas M; Chen B; Harang J; Loch JT; Lu M; Mullen GB; Zhao S; Liu CF; Mills SD
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4556-60. PubMed ID: 21719282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAD(+)-dependent DNA ligase: a novel target waiting for the right inhibitor.
    Dwivedi N; Dube D; Pandey J; Singh B; Kukshal V; Ramachandran R; Tripathi RP
    Med Res Rev; 2008 Jul; 28(4):545-68. PubMed ID: 18080330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I.
    Yadav N; Khanam T; Shukla A; Rai N; Hajela K; Ramachandran R
    Org Biomol Chem; 2015 May; 13(19):5475-87. PubMed ID: 25875403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.