These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 18630937)

  • 1. Surface design of carbon nanotubes for optimizing the adsorption and electrochemical response of analytes.
    Hu C; Hu S
    Langmuir; 2008 Aug; 24(16):8890-7. PubMed ID: 18630937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymerized ionic liquid-wrapped carbon nanotubes: the promising composites for direct electrochemistry and biosensing of redox protein.
    Xiao C; Chu X; Wu B; Pang H; Zhang X; Chen J
    Talanta; 2010 Mar; 80(5):1719-24. PubMed ID: 20152402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S; Morin S; Stevenson KJ
    Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes.
    Liu Q; Lu X; Li J; Yao X; Li J
    Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption behavior of DNA-wrapped carbon nanotubes on self-assembled monolayer surfaces.
    Zangmeister RA; Maslar JE; Opdahl A; Tarlov MJ
    Langmuir; 2007 May; 23(11):6252-6. PubMed ID: 17455960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains.
    Crevillen AG; Pumera M; Gonzalez MC; Escarpa A
    Analyst; 2009 Apr; 134(4):657-62. PubMed ID: 19305913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes.
    Zhang J; Feng M; Tachikawa H
    Biosens Bioelectron; 2007 Jun; 22(12):3036-41. PubMed ID: 17321126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple route to incorporate redox mediator into carbon nanotubes/Nafion composite film and its application to determine NADH at low potential.
    Huang M; Jiang H; Zhai J; Liu B; Dong S
    Talanta; 2007 Nov; 74(1):132-9. PubMed ID: 18371622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes.
    Shobha Jeykumari DR; Sriman Narayanan S
    Biosens Bioelectron; 2008 Apr; 23(9):1404-11. PubMed ID: 18294834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotubes and glucose oxidase bionanocomposite bridged by ionic liquid-like unit: preparation and electrochemical properties.
    Zhang Y; Shen Y; Han D; Wang Z; Song J; Li F; Niu L
    Biosens Bioelectron; 2007 Oct; 23(3):438-43. PubMed ID: 17720471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical quartz crystal impedance and fluorescence quenching studies on the binding of carbon nanotubes (CNTs)-adsorbed and solution rutin with hemoglobin.
    Su Y; Xie Q; Yang Q; Tu X; Cao Z; Jia X; Su Z; Zhang Y; Meng W; Yao S
    Biotechnol Prog; 2007; 23(2):473-9. PubMed ID: 17326660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new surface-enhanced Raman scattering system for carbon nanotubes.
    Ouyang Y; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):2211-3. PubMed ID: 15911413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of trihalomethanes from water with carbon nanotubes.
    Lu C; Chung YL; Chang KF
    Water Res; 2005 Mar; 39(6):1183-9. PubMed ID: 15766973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of covalently attached hexadecaanilines on carbon nanotubes: toward electronic nanocarbon preparation.
    Chiang LY; Anandakathir R; Hauck TS; Lee L; Canteenwala T; Padmawar PA; Pritzker K; Bruno FF; Samuelson LA
    Nanoscale; 2010 Apr; 2(4):535-41. PubMed ID: 20644756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes.
    Wang Z; Yu X; Pan B; Xing B
    Environ Sci Technol; 2010 Feb; 44(3):978-84. PubMed ID: 20030389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroactive films of heme protein-coated multiwalled carbon nanotubes.
    Zhao L; Liu H; Hu N
    J Colloid Interface Sci; 2006 Apr; 296(1):204-11. PubMed ID: 16182303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of kojic acid based on the interface enhancement effects of carbon nanotube/alizarin red S modified electrode.
    Liu J; Zhou D; Liu X; Wu K; Wan C
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):20-4. PubMed ID: 19147335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The high dispersion of DNA-multiwalled carbon nanotubes and their properties.
    Li Z; Wu Z; Li K
    Anal Biochem; 2009 Apr; 387(2):267-70. PubMed ID: 19454222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical-assisted encapsulation of catechol on a multiwalled carbon nanotube modified electrode.
    Kumar AS; Swetha P
    Langmuir; 2010 May; 26(10):6874-7. PubMed ID: 20411948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical reduction of nitrobenzene at carbon nanotube electrode.
    Li YP; Cao HB; Liu CM; Zhang Y
    J Hazard Mater; 2007 Sep; 148(1-2):158-63. PubMed ID: 17374445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.