BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18630945)

  • 1. The 140-GHz (D-band) saturation transfer electron paramagnetic resonance studies of macromolecular dynamics in conducting polymers.
    Krinichnyi VI
    J Phys Chem B; 2008 Aug; 112(32):9746-52. PubMed ID: 18630945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2 mm waveband saturation transfer electron paramagnetic resonance of conducting polymers.
    Krinichnyi VI
    J Chem Phys; 2008 Oct; 129(13):134510. PubMed ID: 19045108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High field/high frequency saturation transfer electron paramagnetic resonance spectroscopy: increased sensitivity to very slow rotational motions.
    Hustedt EJ; Beth AH
    Biophys J; 2004 Jun; 86(6):3940-50. PubMed ID: 15189890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier-transform EPR at high-field/high-frequency (3.4 T/95 GHz) using broadband stochastic microwave excitation.
    Fuhs M; Prisner T; Möbius K
    J Magn Reson; 2001 Mar; 149(1):67-73. PubMed ID: 11273753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of T1-spin-lattice relaxation time in a two-level system by continuous wave multiquantum electron paramagnetic resonance spectroscopy in a presence of tetrachromatic microwave irradiation.
    Dutka M; Gurbiel RJ; Kozioł J; Froncisz W
    J Magn Reson; 2004 Oct; 170(2):220-7. PubMed ID: 15388084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-dynamics of the spin-correlated radical pair in photosystem I. Pulsed time-resolved EPR at high magnetic field.
    Poluektov OG; Paschenko SV; Utschig LM
    Phys Chem Chem Phys; 2009 Aug; 11(31):6750-6. PubMed ID: 19639149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explanation of spin-lattice relaxation rates of spin labels obtained with multifrequency saturation recovery EPR.
    Mailer C; Nielsen RD; Robinson BH
    J Phys Chem A; 2005 May; 109(18):4049-61. PubMed ID: 16833727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 35-GHz (Q-band) saturation transfer electron paramagnetic resonance studies of rotational diffusion.
    Johnson ME; Hyde JS
    Biochemistry; 1981 May; 20(10):2875-80. PubMed ID: 6264947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-processing of EPR spectra by convolution filtering: calculation of a harmonics' series and automatic separation of fast-motion components from spin-label EPR spectra.
    Smirnov AI
    J Magn Reson; 2008 Jan; 190(1):154-9. PubMed ID: 17967556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced EPR sensitivity from a ferroelectric cavity insert.
    Nesmelov YE; Surek JT; Thomas DD
    J Magn Reson; 2001 Nov; 153(1):7-14. PubMed ID: 11700076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution electron paramagnetic resonance spectroscopy of septet pyridyl-2,4,6-trinitrene in solid argon: Fine-structure parameters of six electron-spin cluster.
    Misochko EY; Akimov AV; Chapyshev SV
    J Chem Phys; 2008 Nov; 129(17):174510. PubMed ID: 19045361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restricted orientational motion of nitroxides in molecular glasses: direct estimation of the motional time scale basing on the comparative study of primary and stimulated electron spin echo decays.
    Dzuba SA; Kirilina EP; Salnikov ES; Kulik LV
    J Chem Phys; 2005 Mar; 122(9):094702. PubMed ID: 15836157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron paramagnetic resonance study of radiation damage in photosynthetic reaction center crystals.
    Utschig LM; Chemerisov SD; Tiede DM; Poluektov OG
    Biochemistry; 2008 Sep; 47(35):9251-7. PubMed ID: 18690706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption line CW EPR using an amplitude modulated longitudinal field.
    Fedin M; Gromov I; Schweiger A
    J Magn Reson; 2004 Nov; 171(1):80-9. PubMed ID: 15504685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic mixing processes in spin triads of "breathing crystals" Cu(hfac)(2)L(R): a multifrequency EPR study at 34, 122 and 244 GHz.
    Fedin MV; Veber SL; Romanenko GV; Ovcharenko VI; Sagdeev RZ; Klihm G; Reijerse E; Lubitz W; Bagryanskaya EG
    Phys Chem Chem Phys; 2009 Aug; 11(31):6654-63. PubMed ID: 19639139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FID detection of EPR and ENDOR spectra at high microwave frequencies.
    Blok H; Akimoto I; Milikisyants S; Gast P; Groenen EJ; Schmidt J
    J Magn Reson; 2009 Nov; 201(1):57-60. PubMed ID: 19744870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force detected electron spin resonance at 94 GHz.
    Cruickshank PA; Smith GM
    Rev Sci Instrum; 2007 Jan; 78(1):015101. PubMed ID: 17503940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifrequency time-resolved electron paramagnetic resonance investigations after photolysis of phosphine oxide photoinitiators. Dependence of triplet mechanism chemically induced dynamic electron polarization on microwave frequency.
    Makarov TN; Savitsky AN; Möbius K; Beckert D; Paul H
    J Phys Chem A; 2005 Mar; 109(10):2254-63. PubMed ID: 16838996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of resolution-enhancement methods in saturation-transfer EPR. 15N isotopically substituted spin labels and 35 GHz high-frequency operation.
    Johnson ME; Thiyagarajan P; Bates B; Currie BL
    Biophys J; 1982 Feb; 37(2):563-7. PubMed ID: 6277404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A longitudinally detected high-field ESR spectrometer for the measurement of spin-lattice relaxation times.
    Murányi F; Simon F; Fülöp F; Jánossy A
    J Magn Reson; 2004 Apr; 167(2):221-7. PubMed ID: 15040977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.