BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18631237)

  • 21. Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production.
    Yao SY; Luo L; Har KJ; Becker A; Rüberg S; Yu GQ; Zhu JB; Cheng HP
    J Bacteriol; 2004 Sep; 186(18):6042-9. PubMed ID: 15342573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Sinorhizobium meliloti and Agrobacterium tumefaciens ExoR ortholog is not crucial for Brucella abortus virulence.
    Castillo-Zeledón A; Ruiz-Villalobos N; Altamirano-Silva P; Chacón-Díaz C; Barquero-Calvo E; Chaves-Olarte E; Guzmán-Verri C
    PLoS One; 2021; 16(8):e0254568. PubMed ID: 34388167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression.
    Heckel BC; Tomlinson AD; Morton ER; Choi JH; Fuqua C
    J Bacteriol; 2014 Sep; 196(18):3221-33. PubMed ID: 24982308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sinorhizobium meliloti SyrA mediates the transcriptional regulation of genes involved in lipopolysaccharide sulfation and exopolysaccharide biosynthesis.
    Keating DH
    J Bacteriol; 2007 Mar; 189(6):2510-20. PubMed ID: 17209018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti.
    Barnett MJ; Long SR
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158240
    [No Abstract]   [Full Text] [Related]  

  • 26. Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens.
    Wu CF; Lin JS; Shaw GC; Lai EM
    PLoS Pathog; 2012 Sep; 8(9):e1002938. PubMed ID: 23028331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhizobium meliloti exopolysaccharides: genetic analyses and symbiotic importance.
    Reuber TL; Reed J; Glazebrook J; Glucksmann MA; Ahmann D; Marra A; Walker GC
    Biochem Soc Trans; 1991 Aug; 19(3):636-41. PubMed ID: 1783190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Important Late-Stage Symbiotic Role of the Sinorhizobium meliloti Exopolysaccharide Succinoglycan.
    Arnold MFF; Penterman J; Shabab M; Chen EJ; Walker GC
    J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29632097
    [No Abstract]   [Full Text] [Related]  

  • 29. Motility control through an anti-activation mechanism in Agrobacterium tumefaciens.
    Alakavuklar MA; Heckel BC; Stoner AM; Stembel JA; Fuqua C
    Mol Microbiol; 2021 Nov; 116(5):1281-1297. PubMed ID: 34581467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ChvG-ChvI Regulatory Network: A Conserved Global Regulatory Circuit Among the Alphaproteobacteria with Pervasive Impacts on Host Interactions and Diverse Cellular Processes.
    Greenwich JL; Heckel BC; Alakavuklar MA; Fuqua C
    Annu Rev Microbiol; 2023 Sep; 77():131-148. PubMed ID: 37040790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis.
    Wells DH; Long SR
    Mol Microbiol; 2002 Mar; 43(5):1115-27. PubMed ID: 11918800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FeuN, a novel modulator of two-component signalling identified in Sinorhizobium meliloti.
    Carlyon RE; Ryther JL; VanYperen RD; Griffitts JS
    Mol Microbiol; 2010 Jul; 77(1):170-82. PubMed ID: 20487268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The novel genes emmABC are associated with exopolysaccharide production, motility, stress adaptation, and symbiosis in Sinorhizobium meliloti.
    Morris J; González JE
    J Bacteriol; 2009 Oct; 191(19):5890-900. PubMed ID: 19633078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa.
    Wippel K; Long SR
    J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Sinorhizobium meliloti ExoR protein is required for the downregulation of lpsS transcription and succinoglycan biosynthesis in response to divalent cations.
    Keating DH
    FEMS Microbiol Lett; 2007 Feb; 267(1):23-9. PubMed ID: 17233674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
    Torres-Quesada O; Oruezabal RI; Peregrina A; Jofré E; Lloret J; Rivilla R; Toro N; Jiménez-Zurdo JI
    BMC Microbiol; 2010 Mar; 10():71. PubMed ID: 20205931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti.
    Schäper S; Krol E; Skotnicka D; Kaever V; Hilker R; Søgaard-Andersen L; Becker A
    J Bacteriol; 2016 Feb; 198(3):521-35. PubMed ID: 26574513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coordination of symbiosis and cell cycle functions in Sinorhizobium meliloti.
    Xue S; Biondi EG
    Biochim Biophys Acta Gene Regul Mech; 2019 Jul; 1862(7):691-696. PubMed ID: 29783033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti.
    Pini F; De Nisco NJ; Ferri L; Penterman J; Fioravanti A; Brilli M; Mengoni A; Bazzicalupo M; Viollier PH; Walker GC; Biondi EG
    PLoS Genet; 2015 May; 11(5):e1005232. PubMed ID: 25978424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sinorhizobium meliloti Chemoreceptor McpV Senses Short-Chain Carboxylates via Direct Binding.
    Compton KK; Hildreth SB; Helm RF; Scharf BE
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30201781
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.