BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18631286)

  • 1. Glycosaminoglycans in the pericellular matrix of chondrons and chondrocytes.
    Wang QG; El Haj AJ; Kuiper NJ
    J Anat; 2008 Sep; 213(3):266-73. PubMed ID: 18631286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose.
    Knight MM; Ross JM; Sherwin AF; Lee DA; Bader DL; Poole CA
    Biochim Biophys Acta; 2001 May; 1526(2):141-6. PubMed ID: 11325535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrons from articular cartilage (II): Analysis of the glycosaminoglycans in the cellular microenvironment of isolated canine chondrons.
    Poole CA; Honda T; Skinner SJ; Schofield JR; Hyde KF; Shinkai H
    Connect Tissue Res; 1990; 24(3-4):319-30. PubMed ID: 2376132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human osteoarthritic chondrons outnumber patient- and joint-matched chondrocytes in hydrogel culture-Future application in autologous cell-based OA cartilage repair?
    Rothdiener M; Uynuk-Ool T; Südkamp N; Aurich M; Grodzinsky AJ; Kurz B; Rolauffs B
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1206-e1220. PubMed ID: 28714570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering.
    Mouw JK; Case ND; Guldberg RE; Plaas AH; Levenston ME
    Osteoarthritis Cartilage; 2005 Sep; 13(9):828-36. PubMed ID: 16006153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-culture of chondrons and mesenchymal stromal cells reduces the loss of collagen VI and improves extracellular matrix production.
    Owida HA; De Las Heras Ruiz T; Dhillon A; Yang Y; Kuiper NJ
    Histochem Cell Biol; 2017 Dec; 148(6):625-638. PubMed ID: 28821957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Chondrons from Hyaline Cartilage.
    Korpershoek JV; Rikkers M; Vonk LA
    Methods Mol Biol; 2023; 2598():21-27. PubMed ID: 36355282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro culture of enzymatically isolated chondrons: a possible model for the initiation of osteoarthritis.
    Ross JM; Sherwin AF; Poole CA
    J Anat; 2006 Dec; 209(6):793-806. PubMed ID: 17118066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for the Isolation of Intact Chondrons from Healthy and Osteoarthritic Human Articular Cartilage.
    Uzieliene I; Denkovskij J; Bernotiene E; Kalvaityte U; Vaiciuleviciute R; Ramos YFM; Mobasheri A
    Methods Mol Biol; 2021; 2245():13-22. PubMed ID: 33315192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge.
    Hing WA; Sherwin AF; Poole CA
    Osteoarthritis Cartilage; 2002 Apr; 10(4):297-307. PubMed ID: 11950253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolated chondrons: a viable alternative for studies of chondrocyte metabolism in vitro.
    Lee GM; Poole CA; Kelley SS; Chang J; Caterson B
    Osteoarthritis Cartilage; 1997 Jul; 5(4):261-74. PubMed ID: 9404471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proteomic approach for identification and localization of the pericellular components of chondrocytes.
    Zhang Z; Jin W; Beckett J; Otto T; Moed B
    Histochem Cell Biol; 2011 Aug; 136(2):153-62. PubMed ID: 21698479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of gene expression profile between human chondrons and chondrocytes: a cDNA microarray study.
    Zhang Z; Fan J; Becker KG; Graff RD; Lee GM; Francomano CA
    Osteoarthritis Cartilage; 2006 May; 14(5):449-59. PubMed ID: 16414292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational spectroscopic monitoring and biochemical analysis of pericellular matrix formation and maturation in a 3-dimensional chondrocyte culture model.
    Owida HA; Rutter AV; Cinque G; Kuiper NJ; Sulé-Suso J; Yang Y
    Analyst; 2018 Dec; 143(24):5979-5986. PubMed ID: 30310903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production.
    Larson CM; Kelley SS; Blackwood AD; Banes AJ; Lee GM
    Matrix Biol; 2002 Jun; 21(4):349-59. PubMed ID: 12128072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A detailed quantitative outcome measure of glycosaminoglycans in human articular cartilage for cell therapy and tissue engineering strategies.
    Kuiper NJ; Sharma A
    Osteoarthritis Cartilage; 2015 Dec; 23(12):2233-2241. PubMed ID: 26211607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiles of dynamically compressed single chondrocytes and chondrons.
    Wang QG; Magnay JL; Nguyen B; Thomas CR; Zhang Z; El Haj AJ; Kuiper NJ
    Biochem Biophys Res Commun; 2009 Feb; 379(3):738-42. PubMed ID: 19118531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy.
    Youn I; Choi JB; Cao L; Setton LA; Guilak F
    Osteoarthritis Cartilage; 2006 Sep; 14(9):889-97. PubMed ID: 16626979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosaminoglycan profiles of repair tissue formed following autologous chondrocyte implantation differ from control cartilage.
    Sharma A; Wood LD; Richardson JB; Roberts S; Kuiper NJ
    Arthritis Res Ther; 2007; 9(4):R79. PubMed ID: 17697352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.