BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18631295)

  • 21. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics.
    Li X; Wu HX; Southerton SG
    BMC Genomics; 2011 Oct; 12():480. PubMed ID: 21962175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine.
    Pascual MB; Llebrés MT; Craven-Bartle B; Cañas RA; Cánovas FM; Ávila C
    Plant Biotechnol J; 2018 May; 16(5):1094-1104. PubMed ID: 29055073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity.
    Ziaco E; Truettner C; Biondi F; Bullock S
    Plant Cell Environ; 2018 Apr; 41(4):823-836. PubMed ID: 29361193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional analysis of differentially expressed genes in response to stem inclination in young seedlings of pine.
    Ramos P; Le Provost G; Gantz C; Plomion C; Herrera R
    Plant Biol (Stuttg); 2012 Nov; 14(6):923-33. PubMed ID: 22646487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrative analysis of wood biomass and developing xylem transcriptome provide insights into mechanisms of lignin biosynthesis in wood formation of Pinus massoniana.
    Ni Z; Han X; Yang Z; Xu M; Feng Y; Chen Y; Xu LA
    Int J Biol Macromol; 2020 Nov; 163():1926-1937. PubMed ID: 32898541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster ait.).
    Plomion C; Pionneau C; Brach J; Costa P; Baillères H
    Plant Physiol; 2000 Jul; 123(3):959-69. PubMed ID: 10889244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intra-annual dynamics of xylem growth in Pinus massoniana submitted to an experimental nitrogen addition in Central China.
    Zhang S; Huang JG; Rossi S; Ma Q; Yu B; Zhai L; Luo D; Guo X; Fu S; Zhang W
    Tree Physiol; 2017 Nov; 37(11):1546-1553. PubMed ID: 28985432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analyses of high spatial resolution datasets identify genes associated with multi-layered secondary cell wall thickening in Pinus bungeana.
    Guo Y; Jiao L; Wang J; Ma L; Lu Y; Zhang Y; Guo J; Yin Y
    Ann Bot; 2024 May; 133(7):953-968. PubMed ID: 38366549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A putative role for γ-aminobutyric acid (GABA) in vascular development in pine seedlings.
    Molina-Rueda JJ; Pascual MB; Pissarra J; Gallardo F
    Planta; 2015 Jan; 241(1):257-67. PubMed ID: 25183257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exogenous Brassinosteroid Facilitates Xylem Development in
    Fan F; Zhou Z; Qin H; Tan J; Ding G
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adjustment capacity of maritime pine cambial activity in drought-prone environments.
    Vieira J; Campelo F; Rossi S; Carvalho A; Freitas H; Nabais C
    PLoS One; 2015; 10(5):e0126223. PubMed ID: 25961843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xylem parenchyma cell walls lack a gravitropic response in conifer compression wood.
    Donaldson LA; Nanayakkara B; Radotić K; Djikanovic-Golubović D; Mitrović A; Bogdanović Pristov J; Simonović Radosavljević J; Kalauzi A
    Planta; 2015 Dec; 242(6):1413-24. PubMed ID: 26287313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climatic and physiological regulation of the bimodal xylem formation pattern in Pinus pinaster saplings.
    Garcia-Forner N; Vieira J; Nabais C; Carvalho A; Martínez-Vilalta J; Campelo F
    Tree Physiol; 2019 Dec; 39(12):2008-2018. PubMed ID: 31631224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region.
    Zhang J; Gou X; Pederson N; Zhang F; Niu H; Zhao S; Wang F
    Tree Physiol; 2018 Jun; 38(6):840-852. PubMed ID: 29401316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis.
    Cañas RA; Canales J; Muñoz-Hernández C; Granados JM; Ávila C; García-Martín ML; Cánovas FM
    J Exp Bot; 2015 Jun; 66(11):3113-27. PubMed ID: 25873654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness.
    Carvalho A; Nabais C; Vieira J; Rossi S; Campelo F
    PLoS One; 2015; 10(8):e0136305. PubMed ID: 26305893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and Expression Profile of
    Galibina NA; Moshchenskaya YL; Tarelkina TV; Nikerova KM; Korzhenevskii MA; Serkova AA; Afoshin NV; Semenova LI; Ivanova DS; Guljaeva EN; Chirva OV
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda).
    Lorenz WW; Dean JF
    Tree Physiol; 2002 Apr; 22(5):301-10. PubMed ID: 11960754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea.
    Castagneri D; Battipaglia G; von Arx G; Pacheco A; Carrer M
    Tree Physiol; 2018 Aug; 38(8):1098-1109. PubMed ID: 29688500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Annual climate variation modifies nitrogen induced carbon accumulation of Pinus sylvestris forests.
    Lim H; Oren R; Linder S; From F; Nordin A; Fahlvik N; Lundmark T; Näsholm T
    Ecol Appl; 2017 Sep; 27(6):1838-1851. PubMed ID: 28464423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.