These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18632107)

  • 1. A multi-modular tensegrity model of an actin stress fiber.
    Luo Y; Xu X; Lele T; Kumar S; Ingber DE
    J Biomech; 2008 Aug; 41(11):2379-87. PubMed ID: 18632107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.
    Kumar S; Maxwell IZ; Heisterkamp A; Polte TR; Lele TP; Salanga M; Mazur E; Ingber DE
    Biophys J; 2006 May; 90(10):3762-73. PubMed ID: 16500961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered mechanical properties of actin fibers due to breast cancer invasion: parameter identification based on micropipette aspiration and multiscale tensegrity modeling.
    Tabatabaei M; Tafazzoli-Shadpour M; Khani MM
    Med Biol Eng Comput; 2021 Mar; 59(3):547-560. PubMed ID: 33559086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery.
    Tanner K; Boudreau A; Bissell MJ; Kumar S
    Biophys J; 2010 Nov; 99(9):2775-83. PubMed ID: 21044574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic response of contractile filament bundles.
    Besser A; Colombelli J; Stelzer EH; Schwarz US
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051902. PubMed ID: 21728567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical properties of actin stress fibers of non-motile cells.
    Deguchi S; Sato M
    Biorheology; 2009; 46(2):93-105. PubMed ID: 19458413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization.
    Colombelli J; Besser A; Kress H; Reynaud EG; Girard P; Caussinus E; Haselmann U; Small JV; Schwarz US; Stelzer EH
    J Cell Sci; 2009 May; 122(Pt 10):1665-79. PubMed ID: 19401336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts.
    Sbrana F; Sassoli C; Meacci E; Nosi D; Squecco R; Paternostro F; Tiribilli B; Zecchi-Orlandini S; Francini F; Formigli L
    Am J Physiol Cell Physiol; 2008 Jul; 295(1):C160-72. PubMed ID: 18480300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcomere mechanics in capillary endothelial cells.
    Russell RJ; Xia SL; Dickinson RB; Lele TP
    Biophys J; 2009 Sep; 97(6):1578-85. PubMed ID: 19751662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the mechanical connection between apical stress fibers and the nucleus in vascular smooth muscle cells cultured on a substrate.
    Nagayama K; Yamazaki S; Yahiro Y; Matsumoto T
    J Biomech; 2014 Apr; 47(6):1422-9. PubMed ID: 24548337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsurgery-aided in-situ force probing reveals extensibility and viscoelastic properties of individual stress fibers.
    Labouesse C; Gabella C; Meister JJ; Vianay B; Verkhovsky AB
    Sci Rep; 2016 Mar; 6():23722. PubMed ID: 27025817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress fibres are embedded in a contractile cortical network.
    Vignaud T; Copos C; Leterrier C; Toro-Nahuelpan M; Tseng Q; Mahamid J; Blanchoin L; Mogilner A; Théry M; Kurzawa L
    Nat Mater; 2021 Mar; 20(3):410-420. PubMed ID: 33077951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recoil after severing reveals stress fiber contraction mechanisms.
    Stachowiak MR; O'Shaughnessy B
    Biophys J; 2009 Jul; 97(2):462-71. PubMed ID: 19619460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin and [Formula: see text]-actinin regulation of stress fiber contractility under tensile stress.
    Ni H; Ni Q; Papoian GA; Trache A; Jiang Y
    Sci Rep; 2023 May; 13(1):8662. PubMed ID: 37248294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-induced adsorption and anisotropic growth of focal adhesions.
    Besser A; Safran SA
    Biophys J; 2006 May; 90(10):3469-84. PubMed ID: 16513789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fascin plays a role in stress fiber organization and focal adhesion disassembly.
    Elkhatib N; Neu MB; Zensen C; Schmoller KM; Louvard D; Bausch AR; Betz T; Vignjevic DM
    Curr Biol; 2014 Jul; 24(13):1492-9. PubMed ID: 24930964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach.
    Sakamoto Y; Buchanan RM; Sanchez-Adams J; Guilak F; Sacks MS
    J Biomech Eng; 2017 Feb; 139(2):0210071-02100713. PubMed ID: 28024085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical behavior in living cells consistent with the tensegrity model.
    Wang N; Naruse K; Stamenović D; Fredberg JJ; Mijailovich SM; Tolić-Nørrelykke IM; Polte T; Mannix R; Ingber DE
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7765-70. PubMed ID: 11438729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of actin filaments during tension-dependent formation of actin bundles.
    Hirata H; Tatsumi H; Sokabe M
    Biochim Biophys Acta; 2007 Aug; 1770(8):1115-27. PubMed ID: 17498881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based traction force microscopy reveals differential tension in cellular actin bundles.
    Soiné JR; Brand CA; Stricker J; Oakes PW; Gardel ML; Schwarz US
    PLoS Comput Biol; 2015 Mar; 11(3):e1004076. PubMed ID: 25748431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.