These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 18632115)
1. Inferred motions of the S3a helix during voltage-dependent K+ channel gating. Banerjee A; MacKinnon R J Mol Biol; 2008 Sep; 381(3):569-80. PubMed ID: 18632115 [TBL] [Abstract][Full Text] [Related]
2. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Ruta V; Chen J; MacKinnon R Cell; 2005 Nov; 123(3):463-75. PubMed ID: 16269337 [TBL] [Abstract][Full Text] [Related]
3. The principle of gating charge movement in a voltage-dependent K+ channel. Jiang Y; Ruta V; Chen J; Lee A; MacKinnon R Nature; 2003 May; 423(6935):42-8. PubMed ID: 12721619 [TBL] [Abstract][Full Text] [Related]
4. The intrinsic flexibility of the Kv voltage sensor and its implications for channel gating. Sands ZA; Grottesi A; Sansom MS Biophys J; 2006 Mar; 90(5):1598-606. PubMed ID: 16326912 [TBL] [Abstract][Full Text] [Related]
5. Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP. Butterwick JA; MacKinnon R J Mol Biol; 2010 Nov; 403(4):591-606. PubMed ID: 20851706 [TBL] [Abstract][Full Text] [Related]
6. Computer simulation of the KvAP voltage-gated potassium channel: steered molecular dynamics of the voltage sensor. Monticelli L; Robertson KM; MacCallum JL; Tieleman DP FEBS Lett; 2004 Apr; 564(3):325-32. PubMed ID: 15111117 [TBL] [Abstract][Full Text] [Related]
7. Constraints on voltage sensor movement in the shaker K+ channel. Darman RB; Ivy AA; Ketty V; Blaustein RO J Gen Physiol; 2006 Dec; 128(6):687-99. PubMed ID: 17101817 [TBL] [Abstract][Full Text] [Related]
8. Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel. Schönherr R; Mannuzzu LM; Isacoff EY; Heinemann SH Neuron; 2002 Aug; 35(5):935-49. PubMed ID: 12372287 [TBL] [Abstract][Full Text] [Related]
9. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels. Gonzalez C; Morera FJ; Rosenmann E; Alvarez O; Latorre R Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5020-5. PubMed ID: 15774578 [TBL] [Abstract][Full Text] [Related]
10. NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating. Shenkarev ZO; Paramonov AS; Lyukmanova EN; Shingarova LN; Yakimov SA; Dubinnyi MA; Chupin VV; Kirpichnikov MP; Blommers MJ; Arseniev AS J Am Chem Soc; 2010 Apr; 132(16):5630-7. PubMed ID: 20356312 [TBL] [Abstract][Full Text] [Related]
11. X-ray structure of a voltage-dependent K+ channel. Jiang Y; Lee A; Chen J; Ruta V; Cadene M; Chait BT; MacKinnon R Nature; 2003 May; 423(6935):33-41. PubMed ID: 12721618 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field. Nishizawa M; Nishizawa K Biophys J; 2008 Aug; 95(4):1729-44. PubMed ID: 18487312 [TBL] [Abstract][Full Text] [Related]
13. Portability of paddle motif function and pharmacology in voltage sensors. Alabi AA; Bahamonde MI; Jung HJ; Kim JI; Swartz KJ Nature; 2007 Nov; 450(7168):370-5. PubMed ID: 18004375 [TBL] [Abstract][Full Text] [Related]
14. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel. Neale EJ; Rong H; Cockcroft CJ; Sivaprasadarao A J Biol Chem; 2007 Dec; 282(52):37597-604. PubMed ID: 17951256 [TBL] [Abstract][Full Text] [Related]
15. Down-state model of the voltage-sensing domain of a potassium channel. Schow EV; Freites JA; Gogna K; White SH; Tobias DJ Biophys J; 2010 Jun; 98(12):2857-66. PubMed ID: 20550898 [TBL] [Abstract][Full Text] [Related]
16. Models of voltage-dependent conformational changes in NaChBac channels. Shafrir Y; Durell SR; Guy HR Biophys J; 2008 Oct; 95(8):3663-76. PubMed ID: 18641074 [TBL] [Abstract][Full Text] [Related]
17. Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach. Das A; Raghuraman H Biochim Biophys Acta Biomembr; 2021 May; 1863(5):183568. PubMed ID: 33529577 [TBL] [Abstract][Full Text] [Related]
18. A highly charged voltage-sensor helix spontaneously translocates across membranes. He J; Hristova K; Wimley WC Angew Chem Int Ed Engl; 2012 Jul; 51(29):7150-3. PubMed ID: 22696138 [TBL] [Abstract][Full Text] [Related]
19. Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels. Bell DC; Yao H; Saenger RC; Riley JH; Siegelbaum SA J Gen Physiol; 2004 Jan; 123(1):5-19. PubMed ID: 14676285 [TBL] [Abstract][Full Text] [Related]
20. Membrane-perturbing properties of two Arg-rich paddle domains from voltage-gated sensors in the KvAP and HsapBK K(+) channels. Unnerståle S; Madani F; Gräslund A; Mäler L Biochemistry; 2012 May; 51(19):3982-92. PubMed ID: 22533856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]