These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 18632207)
1. Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). Murakami M; Ae N J Hazard Mater; 2009 Mar; 162(2-3):1185-92. PubMed ID: 18632207 [TBL] [Abstract][Full Text] [Related]
2. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Murakami M; Ae N; Ishikawa S Environ Pollut; 2007 Jan; 145(1):96-103. PubMed ID: 16781805 [TBL] [Abstract][Full Text] [Related]
3. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
4. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
5. Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process. Luo CL; Shen ZG; Li XD Int J Phytoremediation; 2007; 9(3):181-96. PubMed ID: 18246767 [TBL] [Abstract][Full Text] [Related]
6. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: implication for phytoextraction and food safety. Li Z; Tang S; Deng X; Wang R; Song Z J Hazard Mater; 2010 May; 177(1-3):352-61. PubMed ID: 20047795 [TBL] [Abstract][Full Text] [Related]
7. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China. Shi J; Yu X; Zhang M; Lu S; Wu W; Wu J; Xu J J Environ Qual; 2011; 40(6):1695-704. PubMed ID: 22031551 [TBL] [Abstract][Full Text] [Related]
8. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils. Broadhurst CL; Chaney RL; Davis AP; Cox A; Kumar K; Reeves RD; Green CE Int J Phytoremediation; 2015; 17(1-6):25-39. PubMed ID: 25174422 [TBL] [Abstract][Full Text] [Related]
9. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Jiang LY; Yang XE; He ZL Chemosphere; 2004 Jun; 55(9):1179-87. PubMed ID: 15081758 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
11. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study. Li H; Wang Q; Cui Y; Dong Y; Christie P Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768 [TBL] [Abstract][Full Text] [Related]
12. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Luo C; Shen Z; Lou L; Li X Environ Pollut; 2006 Dec; 144(3):862-71. PubMed ID: 16616805 [TBL] [Abstract][Full Text] [Related]
13. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Luo C; Shen Z; Li X; Baker AJ Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960 [TBL] [Abstract][Full Text] [Related]
14. Lead in paddy soils and rice plants and its potential health risk around Lechang lead/zinc mine, Guangdong, China. Yang QW; Shu WS; Qiu JW; Wang HB; Lan CY Environ Int; 2004 Sep; 30(7):883-9. PubMed ID: 15196836 [TBL] [Abstract][Full Text] [Related]
15. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials. Navarro A; Cardellach E; Corbella M J Hazard Mater; 2011 Feb; 186(2-3):1576-85. PubMed ID: 21190796 [TBL] [Abstract][Full Text] [Related]
17. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley. Ruiz E; Alonso-Azcárate J; Rodríguez L Environ Pollut; 2011 Mar; 159(3):722-8. PubMed ID: 21190761 [TBL] [Abstract][Full Text] [Related]
18. Assessing effect of electrode configuration on the efficiency of electrokinetic remediation by sequential extraction analysis. Turer D; Genc A J Hazard Mater; 2005 Mar; 119(1-3):167-74. PubMed ID: 15752862 [TBL] [Abstract][Full Text] [Related]
19. Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions. Kim B; McBride MB J Environ Qual; 2009; 38(6):2253-9. PubMed ID: 19875781 [TBL] [Abstract][Full Text] [Related]
20. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Zhuang P; McBride MB; Xia H; Li N; Li Z Sci Total Environ; 2009 Feb; 407(5):1551-61. PubMed ID: 19068266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]