These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 18632251)
1. Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Moore CJ; Goh HT; Hewitt JE Genomics; 2008 Sep; 92(3):159-67. PubMed ID: 18632251 [TBL] [Abstract][Full Text] [Related]
2. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Thornhill P; Bassett D; Lochmüller H; Bushby K; Straub V Brain; 2008 Jun; 131(Pt 6):1551-61. PubMed ID: 18477595 [TBL] [Abstract][Full Text] [Related]
4. Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency. Wood AJ; Müller JS; Jepson CD; Laval SH; Lochmüller H; Bushby K; Barresi R; Straub V Hum Mol Genet; 2011 Dec; 20(24):4879-90. PubMed ID: 21926082 [TBL] [Abstract][Full Text] [Related]
5. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Longman C; Brockington M; Torelli S; Jimenez-Mallebrera C; Kennedy C; Khalil N; Feng L; Saran RK; Voit T; Merlini L; Sewry CA; Brown SC; Muntoni F Hum Mol Genet; 2003 Nov; 12(21):2853-61. PubMed ID: 12966029 [TBL] [Abstract][Full Text] [Related]
6. Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Avsar-Ban E; Ishikawa H; Manya H; Watanabe M; Akiyama S; Miyake H; Endo T; Tamaru Y Glycobiology; 2010 Sep; 20(9):1089-102. PubMed ID: 20466645 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies. Grewal PK; McLaughlan JM; Moore CJ; Browning CA; Hewitt JE Glycobiology; 2005 Oct; 15(10):912-23. PubMed ID: 15958417 [TBL] [Abstract][Full Text] [Related]
8. Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy. Brockington M; Torelli S; Prandini P; Boito C; Dolatshad NF; Longman C; Brown SC; Muntoni F Hum Mol Genet; 2005 Mar; 14(5):657-65. PubMed ID: 15661757 [TBL] [Abstract][Full Text] [Related]
9. NAD+ improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy. Bailey EC; Alrowaished SS; Kilroy EA; Crooks ES; Drinkert DM; Karunasiri CM; Belanger JJ; Khalil A; Kelley JB; Henry CA Skelet Muscle; 2019 Aug; 9(1):21. PubMed ID: 31391079 [TBL] [Abstract][Full Text] [Related]
10. Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of alpha-dystroglycan. Xiong H; Kobayashi K; Tachikawa M; Manya H; Takeda S; Chiyonobu T; Fujikake N; Wang F; Nishimoto A; Morris GE; Nagai Y; Kanagawa M; Endo T; Toda T Biochem Biophys Res Commun; 2006 Dec; 350(4):935-41. PubMed ID: 17034757 [TBL] [Abstract][Full Text] [Related]
11. [Fukuyama congenital muscular dystrophy and related alpha-dystroglycanopathies]. Murakami T; Nishino I Brain Nerve; 2008 Oct; 60(10):1159-64. PubMed ID: 18975603 [TBL] [Abstract][Full Text] [Related]
12. Glycosylation defects: a new mechanism for muscular dystrophy? Grewal PK; Hewitt JE Hum Mol Genet; 2003 Oct; 12 Spec No 2():R259-64. PubMed ID: 12925572 [TBL] [Abstract][Full Text] [Related]
13. [Alpha-dystroglycanopathy (FCMD, MEB, etc): abnormal glycosylation and muscular dystrophy]. Toda T Rinsho Shinkeigaku; 2005 Nov; 45(11):932-4. PubMed ID: 16447766 [TBL] [Abstract][Full Text] [Related]
14. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. van Reeuwijk J; Janssen M; van den Elzen C; Beltran-Valero de Bernabé D; Sabatelli P; Merlini L; Boon M; Scheffer H; Brockington M; Muntoni F; Huynen MA; Verrips A; Walsh CA; Barth PG; Brunner HG; van Bokhoven H J Med Genet; 2005 Dec; 42(12):907-12. PubMed ID: 15894594 [TBL] [Abstract][Full Text] [Related]
15. Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies. Lin YY; White RJ; Torelli S; Cirak S; Muntoni F; Stemple DL Hum Mol Genet; 2011 May; 20(9):1763-75. PubMed ID: 21317159 [TBL] [Abstract][Full Text] [Related]
16. A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients. Humphrey EL; Lacey E; Le LT; Feng L; Sciandra F; Morris CR; Hewitt JE; Holt I; Brancaccio A; Barresi R; Sewry CA; Brown SC; Morris GE Neuromuscul Disord; 2015 Jan; 25(1):32-42. PubMed ID: 25387694 [TBL] [Abstract][Full Text] [Related]
17. Expression and localization of fukutin, POMGnT1, and POMT1 in the central nervous system: consideration for functions of fukutin. Yamamoto T; Kato Y; Kawaguchi M; Shibata N; Kobayashi M Med Electron Microsc; 2004 Dec; 37(4):200-7. PubMed ID: 15614444 [TBL] [Abstract][Full Text] [Related]
18. A rapid PCR method for genotyping the Large(myd) mouse, a model of glycosylation-deficient congenital muscular dystrophy. Browning CA; Grewal PK; Moore CJ; Hewitt JE Neuromuscul Disord; 2005 May; 15(5):331-5. PubMed ID: 15833424 [TBL] [Abstract][Full Text] [Related]
19. New POMT2 mutations causing congenital muscular dystrophy: identification of a founder mutation. Yanagisawa A; Bouchet C; Van den Bergh PY; Cuisset JM; Viollet L; Leturcq F; Romero NB; Quijano-Roy S; Fardeau M; Seta N; Guicheney P Neurology; 2007 Sep; 69(12):1254-60. PubMed ID: 17634419 [TBL] [Abstract][Full Text] [Related]
20. Fukutin expression in mouse non-muscle somatic organs: its relationship to the hypoglycosylation of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Saito Y; Yamamoto T; Ohtsuka-Tsurumi E; Oka A; Mizuguchi M; Itoh M; Voit T; Kato Y; Kobayashi M; Saito K; Osawa M Brain Dev; 2004 Oct; 26(7):469-79. PubMed ID: 15351084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]