BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18632363)

  • 1. SNR-adaptive stream weighting for audio-MES ASR.
    Lee KS
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2001-10. PubMed ID: 18632363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoelectric signal classification for phoneme-based speech recognition.
    Scheme EJ; Hudgins B; Parker PA
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):694-9. PubMed ID: 17405376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved phoneme-based myoelectric speech recognition.
    Zhou Q; Jiang N; Englehart K; Hudgins B
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2016-23. PubMed ID: 19535319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-based speech recognition using hidden markov models with global control variables.
    Lee KS
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):930-40. PubMed ID: 18334384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A research in speech endpoint detection based on boxes-coupling generalization dimension].
    Wang Z; Yang C; Wu W; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):536-41. PubMed ID: 18693426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint Audio-Ultrasound Food Recognition for Noisy Environments.
    Lee KS
    IEEE J Biomed Health Inform; 2020 May; 24(5):1477-1489. PubMed ID: 31484142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2008 Dec; 29(6):838-52. PubMed ID: 18633325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of acoustic feature parameters using myoelectric signals.
    Lee KS
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1587-95. PubMed ID: 20172775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximated mutual information training for speech recognition using myoelectric signals.
    Guo HJ; Chan A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():767-70. PubMed ID: 17945600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust audio-visual speech recognition under noisy audio-video conditions.
    Stewart D; Seymour R; Pass A; Ming J
    IEEE Trans Cybern; 2014 Feb; 44(2):175-84. PubMed ID: 23757540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Telephony-based voice pathology assessment using automated speech analysis.
    Moran RJ; Reilly RB; de Chazal P; Lacy PD
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):468-77. PubMed ID: 16532773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.
    Polur PD; Miller GE
    Med Eng Phys; 2006 Oct; 28(8):741-8. PubMed ID: 16359906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective classification for improved robustness of myoelectric control under nonideal conditions.
    Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multistream articulatory feature-based models for visual speech recognition.
    Saenko K; Livescu K; Glass J; Darrell T
    IEEE Trans Pattern Anal Mach Intell; 2009 Sep; 31(9):1700-7. PubMed ID: 19574628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control.
    Hargrove LJ; Li G; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2009 May; 56(5):1407-14. PubMed ID: 19473932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated speech analysis applied to laryngeal disease categorization.
    Gelzinis A; Verikas A; Bacauskiene M
    Comput Methods Programs Biomed; 2008 Jul; 91(1):36-47. PubMed ID: 18346812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic speech recognition using a predictive echo state network classifier.
    Skowronski MD; Harris JG
    Neural Netw; 2007 Apr; 20(3):414-23. PubMed ID: 17556115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses.
    Huang Y; Englehart KB; Hudgins B; Chan AD
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1801-11. PubMed ID: 16285383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.