These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 18632369)
1. Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. Imfeld K; Neukom S; Maccione A; Bornat Y; Martinoia S; Farine PA; Koudelka-Hep M; Berdondini L IEEE Trans Biomed Eng; 2008 Aug; 55(8):2064-73. PubMed ID: 18632369 [TBL] [Abstract][Full Text] [Related]
2. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Berdondini L; Imfeld K; Maccione A; Tedesco M; Neukom S; Koudelka-Hep M; Martinoia S Lab Chip; 2009 Sep; 9(18):2644-51. PubMed ID: 19704979 [TBL] [Abstract][Full Text] [Related]
3. High-resolution MEA platform for in-vitro electrogenic cell networks imaging. Imfeld K; Garenne A; Neukom S; Maccione A; Martinoia S; Koudelka-Hep M; Berdondini L Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6086-9. PubMed ID: 18003403 [TBL] [Abstract][Full Text] [Related]
4. A CMOS-based microelectrode array for interaction with neuronal cultures. Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452 [TBL] [Abstract][Full Text] [Related]
5. Influence of the first amplifier stage in MEA systems on extracellular signal shapes. Wrobel G; Zhang Y; Krause HJ; Wolters N; Sommerhage F; Offenhäusser A; Ingebrandt S Biosens Bioelectron; 2007 Jan; 22(6):1092-6. PubMed ID: 16713242 [TBL] [Abstract][Full Text] [Related]
6. High-density electrode array for imaging in vitro electrophysiological activity. Berdondini L; van der Wal PD; Guenat O; de Rooij NF; Koudelka-Hep M; Seitz P; Kaufmann R; Metzler P; Blanc N; Rohr S Biosens Bioelectron; 2005 Jul; 21(1):167-74. PubMed ID: 15967365 [TBL] [Abstract][Full Text] [Related]
7. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
8. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures. Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792 [TBL] [Abstract][Full Text] [Related]
9. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip. Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817 [TBL] [Abstract][Full Text] [Related]
10. N-Channel field-effect transistors with floating gates for extracellular recordings. Meyburg S; Goryll M; Moers J; Ingebrandt S; Böcker-Meffert S; Lüth H; Offenhäusser A Biosens Bioelectron; 2006 Jan; 21(7):1037-44. PubMed ID: 16029948 [TBL] [Abstract][Full Text] [Related]
11. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors. Kind T; Issing M; Arnold R; Müller B IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1600-9. PubMed ID: 12549742 [TBL] [Abstract][Full Text] [Related]
12. CMOS microelectrode array for the monitoring of electrogenic cells. Heer F; Franks W; Blau A; Taschini S; Ziegler C; Hierlemann A; Baltes H Biosens Bioelectron; 2004 Sep; 20(2):358-66. PubMed ID: 15308242 [TBL] [Abstract][Full Text] [Related]
13. A novel high channel-count system for acute multisite neuronal recordings. Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102 [TBL] [Abstract][Full Text] [Related]
14. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Frey U; Egert U; Heer F; Hafizovic S; Hierlemann A Biosens Bioelectron; 2009 Mar; 24(7):2191-8. PubMed ID: 19157842 [TBL] [Abstract][Full Text] [Related]
15. Single-chip microelectronic system to interface with living cells. Heer F; Hafizovic S; Ugniwenko T; Frey U; Franks W; Perriard E; Perriard JC; Blau A; Ziegler C; Hierlemann A Biosens Bioelectron; 2007 May; 22(11):2546-53. PubMed ID: 17097869 [TBL] [Abstract][Full Text] [Related]
16. Nanocavity electrode array for recording from electrogenic cells. Hofmann B; Kätelhön E; Schottdorf M; Offenhäusser A; Wolfrum B Lab Chip; 2011 Mar; 11(6):1054-8. PubMed ID: 21286648 [TBL] [Abstract][Full Text] [Related]
17. Large-scale neural ensemble recording in the brains of freely behaving mice. Lin L; Chen G; Xie K; Zaia KA; Zhang S; Tsien JZ J Neurosci Methods; 2006 Jul; 155(1):28-38. PubMed ID: 16554093 [TBL] [Abstract][Full Text] [Related]
18. Very low-noise ENG amplifier system using CMOS technology. Rieger R; Schuettler M; Pal D; Clarke C; Langlois P; Taylor J; Donaldson N IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):427-37. PubMed ID: 17190035 [TBL] [Abstract][Full Text] [Related]
19. Control and data acquisition software for high-density CMOS-based microprobe arrays implementing electronic depth control. Seidl K; Torfs T; De Mazière PA; Van Dijck G; Csercsa R; Dombovari B; Nurcahyo Y; Ramirez H; Van Hulle MM; Orban GA; Paul O; Ulbert I; Neves H; Ruther P Biomed Tech (Berl); 2010 Jun; 55(3):183-91. PubMed ID: 20441537 [TBL] [Abstract][Full Text] [Related]