BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 18632369)

  • 21. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings.
    Werdich AA; Lima EA; Ivanov B; Ges I; Anderson ME; Wikswo JP; Baudenbacher FJ
    Lab Chip; 2004 Aug; 4(4):357-62. PubMed ID: 15269804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional verification of pulse frequency modulation-based image sensor for retinal prosthesis by in vitro electrophysiological experiments using frog retina.
    Furumiya T; Ng DC; Yasuoka K; Kagawa K; Tokuda T; Nunoshita M; Ohta J
    Biosens Bioelectron; 2006 Jan; 21(7):1059-68. PubMed ID: 15886001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spike detection, characterization, and discrimination using feature analysis software written in LabVIEW.
    Stewart CM; Newlands SD; Perachio AA
    Comput Methods Programs Biomed; 2004 Dec; 76(3):239-51. PubMed ID: 15501510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.
    Perelman Y; Ginosar R
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):130-7. PubMed ID: 17260864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Independent positioning of microelectrodes for multisite recordings in vitro.
    Albus K; Sinske K; Heinemann U
    J Neurosci Methods; 2009 Jan; 176(2):182-5. PubMed ID: 18822315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved signal and reduced noise in neural recordings from close-spaced electrode arrays using independent component analysis as a preprocessor.
    Snellings A; Anderson DJ; Aldridge JW
    J Neurosci Methods; 2006 Jan; 150(2):254-64. PubMed ID: 16430966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nyquist interpolation improves neuron yield in multiunit recordings.
    Blanche TJ; Swindale NV
    J Neurosci Methods; 2006 Jul; 155(1):81-91. PubMed ID: 16481043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two multichannel integrated circuits for neural recording and signal processing.
    Obeid I; Morizio JC; Moxon KA; Nicolelis MA; Wolf PD
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):255-8. PubMed ID: 12665041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo.
    Takahashi S; Sakurai Y
    Neuroscience; 2005; 134(1):301-15. PubMed ID: 15982823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endoscopic eye tracking system for fMRI.
    Kanowski M; Rieger JW; Noesselt T; Tempelmann C; Hinrichs H
    J Neurosci Methods; 2007 Feb; 160(1):10-5. PubMed ID: 16978705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.
    Brüggemann D; Wolfrum B; Maybeck V; Mourzina Y; Jansen M; Offenhäusser A
    Nanotechnology; 2011 Jul; 22(26):265104. PubMed ID: 21586820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A discrete-time control algorithm applied to closed-loop pacing of HL-1 cardiomyocytes.
    Whittington RH; Kovacs GT
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):21-30. PubMed ID: 18232343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A system for neural recording and closed-loop intracortical microstimulation in awake rodents.
    Venkatraman S; Elkabany K; Long JD; Yao Y; Carmena JM
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):15-22. PubMed ID: 19224714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity.
    Natarajan A; Molnar P; Sieverdes K; Jamshidi A; Hickman JJ
    Toxicol In Vitro; 2006 Apr; 20(3):375-81. PubMed ID: 16198528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous image and electrophysiological recording with real-time processing and control.
    Rector DM; George JS
    Methods; 2001 Oct; 25(2):151-63. PubMed ID: 11812203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays.
    Du J; Riedel-Kruse IH; Nawroth JC; Roukes ML; Laurent G; Masmanidis SC
    J Neurophysiol; 2009 Mar; 101(3):1671-8. PubMed ID: 19091921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [System for the automated acquisition of electrophysiological data].
    Baldetti F; Bruno C; Cuppini C; Cuppini R; Grianti F
    Boll Soc Ital Biol Sper; 1986 Oct; 62(10):1261-7. PubMed ID: 3828123
    [No Abstract]   [Full Text] [Related]  

  • 40. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle.
    Garris PA; Ensman R; Poehlman J; Alexander A; Langley PE; Sandberg SG; Greco PG; Wightman RM; Rebec GV
    J Neurosci Methods; 2004 Dec; 140(1-2):103-15. PubMed ID: 15589340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.