BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18632372)

  • 1. Noninvasive average flow and differential pressure estimation for an implantable rotary blood pump using dimensional analysis.
    Lim E; Karantonis DM; Reizes JA; Cloherty SL; Mason DG; Lovell NH
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2094-101. PubMed ID: 18632372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive average flow estimation for an implantable rotary blood pump: a new algorithm incorporating the role of blood viscosity.
    Malagutti N; Karantonis DM; Cloherty SL; Ayre PJ; Mason DG; Salamonsen RF; Lovell NH
    Artif Organs; 2007 Jan; 31(1):45-52. PubMed ID: 17209960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients.
    AlOmari AH; Savkin AV; Karantonis DM; Lim E; Lovell NH
    Physiol Meas; 2009 Apr; 30(4):371-86. PubMed ID: 19282557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function.
    Granegger M; Moscato F; Casas F; Wieselthaler G; Schima H
    Artif Organs; 2012 Aug; 36(8):691-9. PubMed ID: 22882439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive activity-based control of an implantable rotary blood pump: comparative software simulation study.
    Karantonis DM; Lim E; Mason DG; Salamonsen RF; Ayre PJ; Lovell NH
    Artif Organs; 2010 Feb; 34(2):E34-45. PubMed ID: 20420588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement for implantable rotary blood pumps.
    Bertram CD
    Physiol Meas; 2005 Aug; 26(4):R99-117. PubMed ID: 15886429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimal sensor count approach to fuzzy logic rotary blood pump flow control.
    Casas F; Ahmed N; Reeves A
    ASAIO J; 2007; 53(2):140-6. PubMed ID: 17413551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for control of an implantable rotary blood pump for heart failure patients using noninvasive measurements.
    Lim E; Alomari AH; Savkin AV; Dokos S; Fraser JF; Timms DL; Mason DG; Lovell NH
    Artif Organs; 2011 Aug; 35(8):E174-80. PubMed ID: 21843286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive estimation and control of inlet pressure in an implantable rotary blood pump for heart failure patients.
    Alomari AH; Savkin AV; Ayre PJ; Lim E; Mason DG; Salamonsen RF; Fraser JF; Lovell NH
    Physiol Meas; 2011 Aug; 32(8):1035-60. PubMed ID: 21666292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of flow estimation for an implantable centrifugal blood pump.
    Wakisaka Y; Okuzono Y; Taenaka Y; Chikanari K; Masuzawa T; Takano H
    ASAIO J; 1997; 43(5):M659-62. PubMed ID: 9360128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter-optimized model of cardiovascular-rotary blood pump interactions.
    Lim E; Dokos S; Cloherty SL; Salamonsen RF; Mason DG; Reizes JA; Lovell NH
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):254-66. PubMed ID: 19770086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; NĂ¼sser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sealing performance of a magnetic fluid seal for rotary blood pumps.
    Mitamura Y; Takahashi S; Kano K; Okamoto E; Murabayashi S; Nishimura I; Higuchi TA
    Artif Organs; 2009 Sep; 33(9):770-3. PubMed ID: 19775271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive pulsatile flow estimation for an implantable rotary blood pump.
    Karantonis DM; Cloherty SL; Mason DG; Ayre PJ; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1018-21. PubMed ID: 18002133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.