BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 18632383)

  • 1. Reinforcement learning in continuous time and space: interference and not ill conditioning is the main problem when using distributed function approximators.
    Baddeley B
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):950-6. PubMed ID: 18632383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble algorithms in reinforcement learning.
    Wiering MA; van Hasselt H
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):930-6. PubMed ID: 18632380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.
    Valasek J; Doebbler J; Tandale MD; Meade AJ
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):1014-20. PubMed ID: 18632393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust reinforcement learning.
    Morimoto J; Doya K
    Neural Comput; 2005 Feb; 17(2):335-59. PubMed ID: 15720771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of nonaffine nonlinear discrete-time systems using reinforcement-learning-based linearly parameterized neural networks.
    Yang Q; Vance JB; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):994-1001. PubMed ID: 18632390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evolutionary approach toward dynamic self-generated fuzzy inference systems.
    Zhou Y; Er MJ
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):963-9. PubMed ID: 18632385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning.
    Dong D; Chen C; Tarn TJ; Pechen A; Rabitz H
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):957-62. PubMed ID: 18632384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct heuristic dynamic programming for damping oscillations in a large power system.
    Lu C; Si J; Xie X
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):1008-13. PubMed ID: 18632392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement learning in continuous time and space.
    Doya K
    Neural Comput; 2000 Jan; 12(1):219-45. PubMed ID: 10636940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof.
    Al-Tamimi A; Lewis FL; Abu-Khalaf M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):943-9. PubMed ID: 18632382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Hebbian and reinforcement learning in a minibrain model.
    Bosman RJ; van Leeuwen WA; Wemmenhove B
    Neural Netw; 2004 Jan; 17(1):29-36. PubMed ID: 14690704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elman backpropagation as reinforcement for simple recurrent networks.
    GrĂ¼ning A
    Neural Comput; 2007 Nov; 19(11):3108-31. PubMed ID: 17883351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of autonomous problem solving process by dynamic construction of task models in multiple tasks environment.
    Ohigashi Y; Omori T
    Neural Netw; 2006 Oct; 19(8):1169-80. PubMed ID: 16989982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The loading problem for recursive neural networks.
    Gori M; Sperduti A
    Neural Netw; 2005 Oct; 18(8):1064-79. PubMed ID: 16198537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm.
    Zhang H; Wei Q; Luo Y
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):937-42. PubMed ID: 18632381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incremental online learning in high dimensions.
    Vijayakumar S; D'Souza A; Schaal S
    Neural Comput; 2005 Dec; 17(12):2602-34. PubMed ID: 16212764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The general inefficiency of batch training for gradient descent learning.
    Wilson DR; Martinez TR
    Neural Netw; 2003 Dec; 16(10):1429-51. PubMed ID: 14622875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graph-based evolutionary algorithm: Genetic Network Programming (GNP) and its extension using reinforcement learning.
    Mabu S; Hirasawa K; Hu J
    Evol Comput; 2007; 15(3):369-98. PubMed ID: 17705783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized neuron: feedforward and recurrent architectures.
    Kulkarni RV; Venayagamoorthy GK
    Neural Netw; 2009 Sep; 22(7):1011-7. PubMed ID: 19660907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.