BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 18632585)

  • 1. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2.
    Baani M; Liesack W
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):10203-8. PubMed ID: 18632585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonium induces differential expression of methane and nitrogen metabolism-related genes in Methylocystis sp. strain SC2.
    Dam B; Dam S; Kim Y; Liesack W
    Environ Microbiol; 2014 Oct; 16(10):3115-27. PubMed ID: 24373058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual Genomic Traits Suggest Methylocystis bryophila S285 to Be Well Adapted for Life in Peatlands.
    Han D; Dedysh SN; Liesack W
    Genome Biol Evol; 2018 Feb; 10(2):623-628. PubMed ID: 29390143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the conventional and novel pmo (particulate methane monooxygenase) operons from methylocystis strain SC2.
    Ricke P; Erkel C; Kube M; Reinhardt R; Liesack W
    Appl Environ Microbiol; 2004 May; 70(5):3055-63. PubMed ID: 15128567
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Guo K; Hakobyan A; Glatter T; Paczia N; Liesack W
    mSystems; 2022 Oct; 7(5):e0040322. PubMed ID: 36154142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high-affinity methane oxidation potential.
    Dam B; Dam S; Kube M; Reinhardt R; Liesack W
    J Bacteriol; 2012 Nov; 194(21):6008-9. PubMed ID: 23045511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses.
    Chen Y; Dumont MG; McNamara NP; Chamberlain PM; Bodrossy L; Stralis-Pavese N; Murrell JC
    Environ Microbiol; 2008 Feb; 10(2):446-59. PubMed ID: 18093158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Community structure, abundance, and activity of methanotrophs in the Zoige wetland of the Tibetan Plateau.
    Yun J; Zhuang G; Ma A; Guo H; Wang Y; Zhang H
    Microb Ecol; 2012 May; 63(4):835-43. PubMed ID: 22159497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a facultative methanotroph Methylocystis iwaonis SD4 from rice rhizosphere and establishment of rapid genetic tools for it.
    Wang Y; Wang Y; Zhou K; Zhang H; Cheng M; Wang B; Yan X
    Biotechnol Lett; 2024 Aug; 46(4):713-724. PubMed ID: 38733438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993.
    Belova SE; Kulichevskaya IS; Bodelier PLE; Dedysh SN
    Int J Syst Evol Microbiol; 2013 Mar; 63(Pt 3):1096-1104. PubMed ID: 22707532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph.
    Dunfield PF; Liesack W; Henckel T; Knowles R; Conrad R
    Appl Environ Microbiol; 1999 Mar; 65(3):1009-14. PubMed ID: 10049856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research progress of atmospheric methane oxidizers in soil].
    Cai Y; Jia Z
    Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):841-53. PubMed ID: 25345015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis.
    Bordel S; Rodríguez Y; Hakobyan A; Rodríguez E; Lebrero R; Muñoz R
    Metab Eng; 2019 Jul; 54():191-199. PubMed ID: 30999053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration.
    Knief C; Kolb S; Bodelier PL; Lipski A; Dunfield PF
    Environ Microbiol; 2006 Feb; 8(2):321-33. PubMed ID: 16423018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition of methane-oxidizing bacterial communities as a function of nutrient loading in the Florida everglades.
    Chauhan A; Pathak A; Ogram A
    Microb Ecol; 2012 Oct; 64(3):750-9. PubMed ID: 22544346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of methane monooxygenase genes in mono lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure.
    Lin JL; Joye SB; Scholten JC; Schäfer H; McDonald IR; Murrell JC
    Appl Environ Microbiol; 2005 Oct; 71(10):6458-62. PubMed ID: 16204580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios.
    Knief C; Dunfield PF
    Environ Microbiol; 2005 Sep; 7(9):1307-17. PubMed ID: 16104854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs.
    Kumaresan D; Héry M; Bodrossy L; Singer AC; Stralis-Pavese N; Thompson IP; Murrell JC
    Res Microbiol; 2011 Dec; 162(10):1027-32. PubMed ID: 21925596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of Methylocystis sp. Strain SC2 to Salt Stress: Physiology, Global Transcriptome, and Amino Acid Profiles.
    Han D; Link H; Liesack W
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crude-MS Strategy for in-Depth Proteome Analysis of the Methane-Oxidizing Methylocystis sp. strain SC2.
    Hakobyan A; Liesack W; Glatter T
    J Proteome Res; 2018 Sep; 17(9):3086-3103. PubMed ID: 30019905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.