These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18632743)

  • 21. [Functional genomics in Arabidopsis thaliana].
    Kato T; Sato S; Tabata S
    Tanpakushitsu Kakusan Koso; 2002 Sep; 47(12 Suppl):1506-11. PubMed ID: 12357602
    [No Abstract]   [Full Text] [Related]  

  • 22. Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves.
    Li L; Foster CM; Gan Q; Nettleton D; James MG; Myers AM; Wurtele ES
    Plant J; 2009 May; 58(3):485-98. PubMed ID: 19154206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental validation of novel genes predicted in the un-annotated regions of the Arabidopsis genome.
    Moskal WA; Wu HC; Underwood BA; Wang W; Town CD; Xiao Y
    BMC Genomics; 2007 Jan; 8():18. PubMed ID: 17229318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion genomics.
    Rea PA
    Nat Biotechnol; 2003 Oct; 21(10):1149-51. PubMed ID: 14520394
    [No Abstract]   [Full Text] [Related]  

  • 25. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis.
    Alonso JM; Ecker JR
    Nat Rev Genet; 2006 Jul; 7(7):524-36. PubMed ID: 16755288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'.
    Saito K; Hirai MY; Yonekura-Sakakibara K
    Trends Plant Sci; 2008 Jan; 13(1):36-43. PubMed ID: 18160330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional and geographical differentiation of candidate balanced polymorphisms in Arabidopsis thaliana.
    Reininga JM; Nielsen D; Purugganan MD
    Mol Ecol; 2009 Jul; 18(13):2844-55. PubMed ID: 19457201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arabidopsis paves the way: genomic and network analyses in crops.
    Ferrier T; Matus JT; Jin J; Riechmann JL
    Curr Opin Biotechnol; 2011 Apr; 22(2):260-70. PubMed ID: 21167706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics.
    Ogawa Y; Dansako T; Yano K; Sakurai N; Suzuki H; Aoki K; Noji M; Saito K; Shibata D
    Plant Cell Physiol; 2008 Feb; 49(2):242-50. PubMed ID: 18178967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana.
    Stangeland B; Rosenhave EM; Winge P; Berg A; Amundsen SS; Karabeg M; Mandal A; Bones AM; Grini PE; Aalen RB
    Physiol Plant; 2009 May; 136(1):110-26. PubMed ID: 19374717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation.
    Yaish MW; Peng M; Rothstein SJ
    Plant J; 2009 Jul; 59(1):123-35. PubMed ID: 19419532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene networks in Arabidopsis thaliana for metabolic and environmental functions.
    Ma S; Bohnert HJ
    Mol Biosyst; 2008 Mar; 4(3):199-204. PubMed ID: 18437262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cis-regulatory elements in plant cell signaling.
    Priest HD; Filichkin SA; Mockler TC
    Curr Opin Plant Biol; 2009 Oct; 12(5):643-9. PubMed ID: 19717332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel upstream regulator of WRKY53 transcription during leaf senescence in Arabidopsis thaliana.
    Miao Y; Smykowski A; Zentgraf U
    Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():110-20. PubMed ID: 18721316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine.
    Wang L; Mitra RM; Hasselmann KD; Sato M; Lenarz-Wyatt L; Cohen JD; Katagiri F; Glazebrook J
    Mol Plant Microbe Interact; 2008 Nov; 21(11):1408-20. PubMed ID: 18842091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular and reverse genetic characterization of NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana.
    Liu Z; Zhu Y; Gao J; Yu F; Dong A; Shen WH
    Plant J; 2009 Jul; 59(1):27-38. PubMed ID: 19228338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves.
    Wagstaff C; Yang TJ; Stead AD; Buchanan-Wollaston V; Roberts JA
    Plant J; 2009 Feb; 57(4):690-705. PubMed ID: 18980641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis.
    Yamamoto YY; Yoshitsugu T; Sakurai T; Seki M; Shinozaki K; Obokata J
    Plant J; 2009 Oct; 60(2):350-62. PubMed ID: 19563441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis.
    Schauer SE; Schlüter PM; Baskar R; Gheyselinck J; Bolaños A; Curtis MD; Grossniklaus U
    Plant J; 2009 Sep; 59(6):987-1000. PubMed ID: 19473325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Democratization and integration of genomic profiling tools.
    Sussman MR; Huttlin EL; Wohlbach DJ
    Methods Mol Biol; 2009; 553():373-93. PubMed ID: 19588117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.