BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18632868)

  • 1. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain.
    Wang P; Dai J; Bai F; Kong KF; Wong SJ; Montgomery RR; Madri JA; Fikrig E
    J Virol; 2008 Sep; 82(18):8978-85. PubMed ID: 18632868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases.
    Roe K; Kumar M; Lum S; Orillo B; Nerurkar VR; Verma S
    J Gen Virol; 2012 Jun; 93(Pt 6):1193-1203. PubMed ID: 22398316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased blood-brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents.
    Morrey JD; Olsen AL; Siddharthan V; Motter NE; Wang H; Taro BS; Chen D; Ruffner D; Hall JO
    J Gen Virol; 2008 Feb; 89(Pt 2):467-473. PubMed ID: 18198377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis.
    Zhao J; Vijay R; Zhao J; Gale M; Diamond MS; Perlman S
    J Virol; 2016 Aug; 90(16):7098-7108. PubMed ID: 27226371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.
    Roe K; Orillo B; Verma S
    PLoS One; 2014; 9(7):e102598. PubMed ID: 25036379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemokine Receptor Ccr7 Restricts Fatal West Nile Virus Encephalitis.
    Bardina SV; Brown JA; Michlmayr D; Hoffman KW; Sum J; Pletnev AG; Lira SA; Lim JK
    J Virol; 2017 May; 91(10):. PubMed ID: 28356527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vγ4+ T cells regulate host immune response to West Nile virus infection.
    Welte T; Aronson J; Gong B; Rachamallu A; Mendell N; Tesh R; Paessler S; Born WK; O'Brien RL; Wang T
    FEMS Immunol Med Microbiol; 2011 Nov; 63(2):183-92. PubMed ID: 22077221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nocodazole delays viral entry into the brain following footpad inoculation with West Nile virus in mice.
    Hunsperger EA; Roehrig JT
    J Neurovirol; 2009 May; 15(3):211-8. PubMed ID: 19444694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals.
    Daniels BP; Holman DW; Cruz-Orengo L; Jujjavarapu H; Durrant DM; Klein RS
    mBio; 2014 Aug; 5(5):e01476-14. PubMed ID: 25161189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West Nile Virus spread and differential chemokine response in the central nervous system of mice: Role in pathogenic mechanisms of encephalitis.
    Vidaña B; Johnson N; Fooks AR; Sánchez-Cordón PJ; Hicks DJ; Nuñez A
    Transbound Emerg Dis; 2020 Mar; 67(2):799-810. PubMed ID: 31655004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system.
    Shrestha B; Zhang B; Purtha WE; Klein RS; Diamond MS
    J Virol; 2008 Sep; 82(18):8956-64. PubMed ID: 18632856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus.
    Diamond MS; Shrestha B; Marri A; Mahan D; Engle M
    J Virol; 2003 Feb; 77(4):2578-86. PubMed ID: 12551996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system.
    Durrant DM; Daniels BP; Pasieka T; Dorsey D; Klein RS
    J Neuroinflammation; 2015 Dec; 12():233. PubMed ID: 26667390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Tissue-Specific CD8
    Aguilar-Valenzuela R; Netland J; Seo YJ; Bevan MJ; Grakoui A; Suthar MS
    J Virol; 2018 May; 92(10):. PubMed ID: 29514902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro and In Vivo Blood-Brain Barrier Models to Study West Nile Virus Pathogenesis.
    Kumar M; Nerurkar VR
    Methods Mol Biol; 2016; 1435():103-13. PubMed ID: 27188553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of NS1 and TLR3 in Pathogenesis and Immunity of WNV.
    Patel S; Sinigaglia A; Barzon L; Fassan M; Sparber F; LeibundGut-Landmann S; Ackermann M
    Viruses; 2019 Jul; 11(7):. PubMed ID: 31277274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteopontin facilitates West Nile virus neuroinvasion via neutrophil "Trojan horse" transport.
    Paul AM; Acharya D; Duty L; Thompson EA; Le L; Stokic DS; Leis AA; Bai F
    Sci Rep; 2017 Jul; 7(1):4722. PubMed ID: 28680095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-22 signaling contributes to West Nile encephalitis pathogenesis.
    Wang P; Bai F; Zenewicz LA; Dai J; Gate D; Cheng G; Yang L; Qian F; Yuan X; Montgomery RR; Flavell RA; Town T; Fikrig E
    PLoS One; 2012; 7(8):e44153. PubMed ID: 22952908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis.
    Wang T; Town T; Alexopoulou L; Anderson JF; Fikrig E; Flavell RA
    Nat Med; 2004 Dec; 10(12):1366-73. PubMed ID: 15558055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis.
    Sitati E; McCandless EE; Klein RS; Diamond MS
    J Virol; 2007 Sep; 81(18):9801-11. PubMed ID: 17626103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.