BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18632868)

  • 21. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.
    Gorman MJ; Poddar S; Farzan M; Diamond MS
    J Virol; 2016 Sep; 90(18):8212-25. PubMed ID: 27384652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of two distinct gammadelta T cell subsets during West Nile virus infection.
    Welte T; Lamb J; Anderson JF; Born WK; O'Brien RL; Wang T
    FEMS Immunol Med Microbiol; 2008 Jul; 53(2):275-83. PubMed ID: 18513355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Icam-1 participates in the entry of west nile virus into the central nervous system.
    Dai J; Wang P; Bai F; Town T; Fikrig E
    J Virol; 2008 Apr; 82(8):4164-8. PubMed ID: 18256150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular microRNA-155 Regulates Virus-Induced Inflammatory Response and Protects against Lethal West Nile Virus Infection.
    Natekar JP; Rothan HA; Arora K; Strate PG; Kumar M
    Viruses; 2019 Dec; 12(1):. PubMed ID: 31861621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier.
    Verma S; Lo Y; Chapagain M; Lum S; Kumar M; Gurjav U; Luo H; Nakatsuka A; Nerurkar VR
    Virology; 2009 Mar; 385(2):425-33. PubMed ID: 19135695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Infection and injury of neurons by West Nile encephalitis virus.
    Shrestha B; Gottlieb D; Diamond MS
    J Virol; 2003 Dec; 77(24):13203-13. PubMed ID: 14645577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion.
    Arjona A; Foellmer HG; Town T; Leng L; McDonald C; Wang T; Wong SJ; Montgomery RR; Fikrig E; Bucala R
    J Clin Invest; 2007 Oct; 117(10):3059-66. PubMed ID: 17909632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immunocompetent and SCID mice.
    Halevy M; Akov Y; Ben-Nathan D; Kobiler D; Lachmi B; Lustig S
    Arch Virol; 1994; 137(3-4):355-70. PubMed ID: 7944955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection.
    Daffis S; Samuel MA; Suthar MS; Keller BC; Gale M; Diamond MS
    J Virol; 2008 Sep; 82(17):8465-75. PubMed ID: 18562536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced immune cell infiltration and increased pro-inflammatory mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus.
    Kumar M; Roe K; Nerurkar PV; Orillo B; Thompson KS; Verma S; Nerurkar VR
    J Neuroinflammation; 2014 Apr; 11():80. PubMed ID: 24750819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parameters of Mosquito-Enhanced West Nile Virus Infection.
    Moser LA; Lim PY; Styer LM; Kramer LD; Bernard KA
    J Virol; 2016 Jan; 90(1):292-9. PubMed ID: 26468544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. West Nile virus and kidney disease.
    Barzon L; Pacenti M; Palù G
    Expert Rev Anti Infect Ther; 2013 May; 11(5):479-87. PubMed ID: 23627854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival.
    Samuel MA; Diamond MS
    J Virol; 2005 Nov; 79(21):13350-61. PubMed ID: 16227257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of West Nile virus neuroinvasion: a critical appraisal.
    Suen WW; Prow NA; Hall RA; Bielefeldt-Ohmann H
    Viruses; 2014 Jul; 6(7):2796-825. PubMed ID: 25046180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons.
    Samuel MA; Whitby K; Keller BC; Marri A; Barchet W; Williams BR; Silverman RH; Gale M; Diamond MS
    J Virol; 2006 Jul; 80(14):7009-19. PubMed ID: 16809306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CD8(+) T cell-mediated immune responses in West Nile virus (Sarafend strain) encephalitis are independent of gamma interferon.
    Wang Y; Lobigs M; Lee E; Koskinen A; Müllbacher A
    J Gen Virol; 2006 Dec; 87(Pt 12):3599-3609. PubMed ID: 17098975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Examination of West Nile Virus Neuroinvasion and Neuropathogenesis in the Central Nervous System of a Murine Model.
    Sultana H
    Methods Mol Biol; 2016; 1435():83-101. PubMed ID: 27188552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Susceptibility and role as competent host of the red-legged partridge after infection with lineage 1 and 2 West Nile virus isolates of Mediterranean and Central European origin.
    Pérez-Ramírez E; Llorente F; Del Amo J; Nowotny N; Jiménez-Clavero MÁ
    Vet Microbiol; 2018 Aug; 222():39-45. PubMed ID: 30080671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis.
    Kumar M; Belcaid M; Nerurkar VR
    Sci Rep; 2016 May; 6():26350. PubMed ID: 27211830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Israeli strain IS-98-ST1 of West Nile virus as viral model for West Nile encephalitis in the Old World.
    Lucas M; Frenkiel MP; Mashimo T; Guénet JL; Deubel V; Desprès P; Ceccaldi PE
    Virol J; 2004 Nov; 1():9. PubMed ID: 15550172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.