BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18632868)

  • 81. MMP9 deficiency does not decrease blood-brain barrier disruption, but increases astrocyte MMP3 expression during viral encephalomyelitis.
    Savarin C; Stohlman SA; Rietsch AM; Butchi N; Ransohoff RM; Bergmann CC
    Glia; 2011 Nov; 59(11):1770-81. PubMed ID: 21800363
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection.
    Benzarti E; Murray KO; Ronca SE
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992514
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Impact of Dietary Fiber on West Nile Virus Infection.
    Ni D; Tan J; Niewold P; Spiteri AG; Pinget GV; Stanley D; King NJC; Macia L
    Front Immunol; 2022; 13():784486. PubMed ID: 35296081
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor.
    Verma S; Kumar M; Gurjav U; Lum S; Nerurkar VR
    Virology; 2010 Feb; 397(1):130-8. PubMed ID: 19922973
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Integrated analysis of microRNAs and their disease related targets in the brain of mice infected with West Nile virus.
    Kumar M; Nerurkar VR
    Virology; 2014 Mar; 452-453():143-51. PubMed ID: 24606691
    [TBL] [Abstract][Full Text] [Related]  

  • 86. West nile virus capsid degradation of claudin proteins disrupts epithelial barrier function.
    Medigeshi GR; Hirsch AJ; Brien JD; Uhrlaub JL; Mason PW; Wiley C; Nikolich-Zugich J; Nelson JA
    J Virol; 2009 Jun; 83(12):6125-34. PubMed ID: 19369347
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents.
    Morrey JD; Taro BS; Siddharthan V; Wang H; Smee DF; Christensen AJ; Furuta Y
    Antiviral Res; 2008 Dec; 80(3):377-9. PubMed ID: 18762216
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Comparison of the neuropathology induced by two West Nile virus strains.
    Donadieu E; Lowenski S; Servely JL; Laloy E; Lilin T; Nowotny N; Richardson J; Zientara S; Lecollinet S; Coulpier M
    PLoS One; 2013; 8(12):e84473. PubMed ID: 24367664
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Semaphorin 7A contributes to West Nile virus pathogenesis through TGF-β1/Smad6 signaling.
    Sultana H; Neelakanta G; Foellmer HG; Montgomery RR; Anderson JF; Koski RA; Medzhitov RM; Fikrig E
    J Immunol; 2012 Sep; 189(6):3150-8. PubMed ID: 22896629
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Neurological suppression of diaphragm electromyographs in hamsters infected with West Nile virus.
    Morrey JD; Siddharthan V; Wang H; Hall JO; Motter NE; Skinner RD; Skirpstunas RT
    J Neurovirol; 2010 Jul; 16(4):318-29. PubMed ID: 20632796
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The Role of Microglia during West Nile Virus Infection of the Central Nervous System.
    Stonedahl S; Clarke P; Tyler KL
    Vaccines (Basel); 2020 Aug; 8(3):. PubMed ID: 32872152
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes.
    Hussmann KL; Fredericksen BL
    J Gen Virol; 2014 Apr; 95(Pt 4):862-867. PubMed ID: 24413421
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Autonomic deficit not the cause of death in West Nile virus neurological disease.
    Wang H; Siddharthan V; Hall JO; Morrey JD
    Clin Auton Res; 2014 Feb; 24(1):15-23. PubMed ID: 24158383
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Signaling events evoked by domain III of envelop glycoprotein of tick-borne encephalitis virus and West Nile virus in human brain microvascular endothelial cells.
    Bhide K; Mochnáčová E; Tkáčová Z; Petroušková P; Kulkarni A; Bhide M
    Sci Rep; 2022 May; 12(1):8863. PubMed ID: 35614140
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A Potential Role for Substance P in West Nile Virus Neuropathogenesis.
    Ronca SE; Gunter SM; Kairis RB; Lino A; Romero J; Pautler RG; Nimmo A; Murray KO
    Viruses; 2022 Sep; 14(9):. PubMed ID: 36146768
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Molecular mechanisms of West Nile virus pathogenesis in brain cell.
    Koh WL; Ng ML
    Emerg Infect Dis; 2005 Apr; 11(4):629-32. PubMed ID: 15829208
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis.
    Funk KE; Arutyunov AD; Desai P; White JP; Soung AL; Rosen SF; Diamond MS; Klein RS
    Aging Cell; 2021 Aug; 20(8):e13412. PubMed ID: 34327802
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Respiratory insufficiency correlated strongly with mortality of rodents infected with West Nile virus.
    Morrey JD; Siddharthan V; Wang H; Hall JO
    PLoS One; 2012; 7(6):e38672. PubMed ID: 22719920
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Detection of West Nile Virus Envelope Protein in Brain Tissue with an Immunohistochemical Assay.
    Yee KT; Vetter DE
    Methods Mol Biol; 2023; 2585():51-69. PubMed ID: 36331765
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Proteomic analysis reveals a proteolytic feedback loop in murine seminal fluid.
    McKee CM; Xu D; Kessler BM; Muschel RJ
    Prostate; 2013 Sep; 73(13):1427-40. PubMed ID: 23765702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.