BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1785 related articles for article (PubMed ID: 18633413)

  • 1. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving photon number states in a superconducting circuit.
    Schuster DI; Houck AA; Schreier JA; Wallraff A; Gambetta JM; Blais A; Frunzio L; Majer J; Johnson B; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Feb; 445(7127):515-8. PubMed ID: 17268464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dressed collective qubit states and the Tavis-Cummings model in circuit QED.
    Fink JM; Bianchetti R; Baur M; Göppl M; Steffen L; Filipp S; Leek PJ; Blais A; Wallraff A
    Phys Rev Lett; 2009 Aug; 103(8):083601. PubMed ID: 19792728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity.
    Sillanpää MA; Park JI; Simmonds RW
    Nature; 2007 Sep; 449(7161):438-42. PubMed ID: 17898762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices.
    Rodríguez-Lara BM; Soto-Eguibar F; Cárdenas AZ; Moya-Cessa HM
    Opt Express; 2013 May; 21(10):12888-98. PubMed ID: 23736508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent dynamics of a flux qubit coupled to a harmonic oscillator.
    Chiorescu I; Bertet P; Semba K; Nakamura Y; Harmans CJ; Mooij JE
    Nature; 2004 Sep; 431(7005):159-62. PubMed ID: 15356624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems.
    Imamoğlu A
    Phys Rev Lett; 2009 Feb; 102(8):083602. PubMed ID: 19257738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED.
    Yang CP
    J Phys Condens Matter; 2011 Jun; 23(22):225702. PubMed ID: 21593555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 90.