These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18633488)

  • 21. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates.
    Medintz IL; Clapp AR; Brunel FM; Tiefenbrunn T; Uyeda HT; Chang EL; Deschamps JR; Dawson PE; Mattoussi H
    Nat Mater; 2006 Jul; 5(7):581-9. PubMed ID: 16799548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FRET pair printing of fluorescent proteins.
    Escalante M; Blum C; Cesa Y; Otto C; Subramaniam V
    Langmuir; 2009 Jun; 25(12):7019-24. PubMed ID: 19366197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pluripotentialities of a quenched fluorescent peptide substrate library: enzymatic detection, characterization, and isoenzymes differentiation.
    Poras H; Ouimet T; Orng SV; Dangé E; Fournié-Zaluski MC; Roques BP
    Anal Biochem; 2011 Dec; 419(2):95-105. PubMed ID: 21893023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GFP-based FRET analysis in live cells.
    Takanishi CL; Bykova EA; Cheng W; Zheng J
    Brain Res; 2006 May; 1091(1):132-9. PubMed ID: 16529720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FRET-based optical assay for monitoring riboswitch activation.
    Harbaugh S; Kelley-Loughnane N; Davidson M; Narayanan L; Trott S; Chushak YG; Stone MO
    Biomacromolecules; 2009 May; 10(5):1055-60. PubMed ID: 19358526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the CFP-substrate-YFP system for protease studies: advantages and limitations.
    Felber LM; Cloutier SM; Kündig C; Kishi T; Brossard V; Jichlinski P; Leisinger HJ; Deperthes D
    Biotechniques; 2004 May; 36(5):878-85. PubMed ID: 15152609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled peptide solvation in portion-mixing libraries of FRET peptides: improved specificity determination for Dengue 2 virus NS2B-NS3 protease and human cathepsin S.
    Alves FM; Hirata IY; Gouvea IE; Alves MF; Meldal M; Brömme D; Juliano L; Juliano MA
    J Comb Chem; 2007; 9(4):627-34. PubMed ID: 17563123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green fluorescent protein rendered susceptible to proteolysis: positions for protease-sensitive insertions.
    Chiang CF; Okou DT; Griffin TB; Verret CR; Williams MN
    Arch Biochem Biophys; 2001 Oct; 394(2):229-35. PubMed ID: 11594737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent resonance energy transfer (FRET) based detection of a multiplex ligation-dependent probe amplification assay (MLPA) product.
    Ozalp VC; Nygren AO; O'Sullivan CK
    Mol Biosyst; 2008 Sep; 4(9):950-4. PubMed ID: 18704233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of bacterial proteases with a panel of fluorescent peptide substrates.
    Wildeboer D; Jeganathan F; Price RG; Abuknesha RA
    Anal Biochem; 2009 Jan; 384(2):321-8. PubMed ID: 18957278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internally quenched fluorescent peptide libraries with randomized sequences designed to detect endopeptidases.
    Oliveira LC; Silva VO; Okamoto DN; Kondo MY; Santos SM; Hirata IY; Vallim MA; Pascon RC; Gouvea IE; Juliano MA; Juliano L
    Anal Biochem; 2012 Feb; 421(1):299-307. PubMed ID: 22067978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue.
    Stengel G; Gill JP; Sandin P; Wilhelmsson LM; Albinsson B; Nordén B; Millar D
    Biochemistry; 2007 Oct; 46(43):12289-97. PubMed ID: 17915941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of a D-amino-acid-containing fluorescence resonance energy transfer peptide library for profiling prokaryotic proteases.
    Kaman WE; Voskamp-Visser I; de Jongh DM; Endtz HP; van Belkum A; Hays JP; Bikker FJ
    Anal Biochem; 2013 Oct; 441(1):38-43. PubMed ID: 23850560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products.
    Piccard H; Hu J; Fiten P; Proost P; Martens E; Van den Steen PE; Van Damme J; Opdenakker G
    Electrophoresis; 2009 Jul; 30(13):2366-77. PubMed ID: 19621364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for mapping protease specificity.
    Diamond SL
    Curr Opin Chem Biol; 2007 Feb; 11(1):46-51. PubMed ID: 17157549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors.
    Ai HW; Hazelwood KL; Davidson MW; Campbell RE
    Nat Methods; 2008 May; 5(5):401-3. PubMed ID: 18425137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent proteins for single-molecule fluorescence applications.
    Seefeldt B; Kasper R; Seidel T; Tinnefeld P; Dietz KJ; Heilemann M; Sauer M
    J Biophotonics; 2008 Mar; 1(1):74-82. PubMed ID: 19343637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing protease activity by single-fluorescent-protein nanocapsules.
    Gu Z; Biswas A; Joo KI; Hu B; Wang P; Tang Y
    Chem Commun (Camb); 2010 Sep; 46(35):6467-9. PubMed ID: 20657917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.