These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18634317)

  • 1. [The efficiency of ATP synthase as a molecular machine].
    Buchachenko AL; Kuznetsov DA
    Biofizika; 2008; 53(3):451-6. PubMed ID: 18634317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically driven ATP synthesis by F1-ATPase.
    Itoh H; Takahashi A; Adachi K; Noji H; Yasuda R; Yoshida M; Kinosita K
    Nature; 2004 Jan; 427(6973):465-8. PubMed ID: 14749837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of pausing F1 motor by external force.
    Hirono-Hara Y; Ishizuka K; Kinosita K; Yoshida M; Noji H
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4288-93. PubMed ID: 15758075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the nucleotide-binding subunit B of the energy producer A1A0 ATP synthase in complex with adenosine diphosphate.
    Kumar A; Manimekalai MS; Grüber G
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1110-5. PubMed ID: 19020348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The concerted nature between three catalytic subunits driving the F1 rotary motor.
    Ariga T
    Biosystems; 2008; 93(1-2):68-77. PubMed ID: 18556115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation from proton slip to "coupled" proton flow in ATP synthase based on the bi-site mechanism.
    Qian J; Liang J
    Biosystems; 2011 Sep; 105(3):233-7. PubMed ID: 21664229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase.
    Gao YQ; Yang W; Karplus M
    Cell; 2005 Oct; 123(2):195-205. PubMed ID: 16239139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [ATP synthase: highly organized molecular structure and its marvelous function].
    Hisabori T; Shimabukuro K; Mitome N
    Tanpakushitsu Kakusan Koso; 2005 Aug; 50(10 Suppl):1151-9. PubMed ID: 16104579
    [No Abstract]   [Full Text] [Related]  

  • 9. [Magnesium magnetic isotope effect: a key towards mechanochemistry of phosphorylating enzymes as molecular machines].
    Buchachenko AL; Kuznetsov DA
    Mol Biol (Mosk); 2006; 40(1):12-9. PubMed ID: 16523686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.
    Feniouk BA; Yoshida M
    Results Probl Cell Differ; 2008; 45():279-308. PubMed ID: 18026702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio.
    Bohnensack R
    Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field affects enzymatic ATP synthesis.
    Buchachenko AL; Kuznetsov DA
    J Am Chem Soc; 2008 Oct; 130(39):12868-9. PubMed ID: 18774801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modeling of ATP synthesis by ATP synthase and its mechanistic implications.
    Nath S; Jain S
    Biochem Biophys Res Commun; 2000 Jun; 272(3):629-33. PubMed ID: 10860805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium isotope effects in enzymatic phosphorylation.
    Buchachenko AL; Kouznetsov DA; Breslavskaya NN; Orlova MA
    J Phys Chem B; 2008 Feb; 112(8):2548-56. PubMed ID: 18247604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase.
    Kumar A; Manimekalai MS; Balakrishna AM; Hunke C; Weigelt S; Sewald N; Grüber G
    Proteins; 2009 Jun; 75(4):807-19. PubMed ID: 19003877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic signalling in the control of mitochondrial F1F0 ATP synthase activity in health and disease.
    Grover GJ; Marone PA; Koetzner L; Seto-Young D
    Int J Biochem Cell Biol; 2008; 40(12):2698-701. PubMed ID: 18707016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial ATP synthase catalytic mechanism: a novel visual comparative structural approach emphasizes pivotal roles for Mg²⁺ and P-loop residues in making ATP.
    Blum DJ; Ko YH; Pedersen PL
    Biochemistry; 2012 Feb; 51(7):1532-46. PubMed ID: 22243519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP synthase: motoring to the finish line.
    Senior AE
    Cell; 2007 Jul; 130(2):220-1. PubMed ID: 17662937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of epsilon subunit on the rotation of thermophilic Bacillus F1-ATPase.
    Tsumuraya M; Furuike S; Adachi K; Kinosita K; Yoshida M
    FEBS Lett; 2009 Apr; 583(7):1121-6. PubMed ID: 19265694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the bind-lock mechanism of the yeast mitochondrial ATP synthase inhibitory peptide.
    Corvest V; Sigalat C; Haraux F
    Biochemistry; 2007 Jul; 46(29):8680-8. PubMed ID: 17595113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.