BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18634350)

  • 21. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of loading rate on the apparent fracture toughness of acrylic bone cement.
    Lewis G
    Biomed Mater Eng; 2002; 12(2):149-55. PubMed ID: 12122238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radius fracture repair using volumetrically expanding polyurethane bone cement.
    Boxberger JI; Adams DJ; Diaz-Doran V; Akkarapaka NB; Kolb ED
    J Hand Surg Am; 2011 Aug; 36(8):1294-302. PubMed ID: 21715102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo behavior of acrylic bone cement in total hip arthroplasty.
    Ries MD; Young E; Al-Marashi L; Goldstein P; Hetherington A; Petrie T; Pruitt L
    Biomaterials; 2006 Jan; 27(2):256-61. PubMed ID: 16039712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fracture characteristics of acrylic bone cement-bone composites.
    Buckley PJ; Orr JF; Revie IC; Breusch SJ; Dunne NJ
    Proc Inst Mech Eng H; 2003; 217(6):419-27. PubMed ID: 14702980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique.
    Roques A; Browne M; Thompson J; Rowland C; Taylor A
    Biomaterials; 2004 Feb; 25(5):769-78. PubMed ID: 14609665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test.
    Heuer DA; Mann KA
    J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of fabrication pressure on the fatigue performance of Cemex XL acrylic bone cement.
    Lewis G; Janna SI
    Biomaterials; 2004; 25(7-8):1415-20. PubMed ID: 14643616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of a pre-blended antibiotic (gentamicin sulfate powder) on various mechanical, thermal, and physical properties of three acrylic bone cements.
    Lewis G; Bhattaram A
    J Biomater Appl; 2006 Apr; 20(4):377-408. PubMed ID: 16443619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fracture toughness of titanium-cement interfaces: effects of fibers and loading angles.
    Khandaker M; Utsaha KC; Morris T
    Int J Nanomedicine; 2014; 9():1689-97. PubMed ID: 24729704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of porosity on the fatigue performance of polymethyl methacrylate bone cement: an analytical investigation.
    Evans SL
    Proc Inst Mech Eng H; 2006 Jan; 220(1):1-10. PubMed ID: 16459441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of in vitro fatigue properties of PMMA bone cement on the polydispersity index of its powder.
    Lewis G; Li Y
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):94-101. PubMed ID: 19878906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements.
    Ormsby R; McNally T; Mitchell C; Dunne N
    J Mater Sci Mater Med; 2010 Aug; 21(8):2287-92. PubMed ID: 20091100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties.
    Slane J; Vivanco J; Meyer J; Ploeg HL; Squire M
    J Mech Behav Biomed Mater; 2014 Jan; 29():451-61. PubMed ID: 24211354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasonic characterization of the mechanical properties and polymerization reaction of acrylic-based bone cements.
    Dunne NJ; Xu Y; Makem J; Orr I
    Proc Inst Mech Eng H; 2007 Apr; 221(3):251-61. PubMed ID: 17539581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of the small-punch test as a technique for characterizing the mechanical properties of acrylic bone cement.
    Dunne NJ; Leonard D; Daly C; Buchanan FJ; Orr JF
    Proc Inst Mech Eng H; 2006 Jan; 220(1):11-21. PubMed ID: 16459442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some failure modes of four clinical bone cements.
    Liu C; Green SM; Watkins ND; Gregg PJ; McCaskie AW
    Proc Inst Mech Eng H; 2001; 215(4):359-66. PubMed ID: 11521759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Static and fatigue mechanical characterizations of variable diameter fibers reinforced bone cement.
    Zhou Y; Yue W; Li C; Mason JJ
    J Mater Sci Mater Med; 2009 Feb; 20(2):633-41. PubMed ID: 18936882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compressive fatigue and fracture toughness behavior of injectable, settable bone cements.
    Harmata AJ; Uppuganti S; Granke M; Guelcher SA; Nyman JS
    J Mech Behav Biomed Mater; 2015 Nov; 51():345-55. PubMed ID: 26282077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.