These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18634350)

  • 41. Innovations in acrylic bone cement and application equipment.
    Kindt-Larsen T; Smith DB; Jensen JS
    J Appl Biomater; 1995; 6(1):75-83. PubMed ID: 7703541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the importance of considering porosity when simulating the fatigue of bone cement.
    Jeffers JR; Browne M; Roques A; Taylor M
    J Biomech Eng; 2005 Aug; 127(4):563-70. PubMed ID: 16121525
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect on the fatigue strength of bone cement of adding sodium fluoride.
    Minari C; Baleani M; Cristofolini L; Baruffaldi F
    Proc Inst Mech Eng H; 2001; 215(2):251-3. PubMed ID: 11382084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimisation of a two-liquid component pre-filled acrylic bone cement system: a design of experiments approach to optimise cement final properties.
    Clements J; Walker G; Pentlavalli S; Dunne N
    J Mater Sci Mater Med; 2014 Oct; 25(10):2287-96. PubMed ID: 25005558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: gentamicin sulfate in SmartSet HV.
    Lewis G; Janna S
    Acta Orthop; 2006 Aug; 77(4):622-7. PubMed ID: 16929440
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative measurement of the stresses induced during polymerisation of bone cement.
    Roques A; Browne M; Taylor A; New A; Baker D
    Biomaterials; 2004 Aug; 25(18):4415-24. PubMed ID: 15046932
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: part II. Fatigue crack propagation.
    Vila MM; Ginebra MP; Gil FJ; Planell JA
    J Biomed Mater Res; 1999; 48(2):128-34. PubMed ID: 10331905
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: I. Fracture toughness.
    Vila MM; Ginebra MP; Gil FJ; Planell JA
    J Biomed Mater Res; 1999; 48(2):121-7. PubMed ID: 10331904
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement.
    Stolk J; Verdonschot N; Mann KA; Huiskes R
    J Biomech; 2003 Jun; 36(6):861-71. PubMed ID: 12742454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement.
    Jeffers JR; Browne M; Taylor M
    Biomaterials; 2005 Sep; 26(27):5532-41. PubMed ID: 15860209
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical effects of the use of vancomycin and meropenem in acrylic bone cement.
    Persson C; Baleani M; Guandalini L; Tigani D; Viceconti M
    Acta Orthop; 2006 Aug; 77(4):617-21. PubMed ID: 16929439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical and thermal behaviour of an acrylic bone cement modified with a triblock copolymer.
    Paz E; Abenojar J; Ballesteros Y; Forriol F; Dunne N; Del Real JC
    J Mater Sci Mater Med; 2016 Apr; 27(4):72. PubMed ID: 26886820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Creep properties of three low temperature-curing bone cements: a preclinical assessment.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 2000 Sep; 53(5):498-504. PubMed ID: 10984697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of the antimicrobial peptide, Dhvar-5, on gentamicin release from a polymethyl methacrylate bone cement.
    Faber C; Hoogendoorn RJ; Lyaruu DM; Stallmann HP; van Marle J; van Nieuw Amerongen A; Smit TH; Wuisman PI;
    Biomaterials; 2005 Oct; 26(28):5717-26. PubMed ID: 15878377
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved orthopaedic bone cement formulations based on rubber toughening.
    Puckett AD; Roberts B; Bu L; Mays JW
    Crit Rev Biomed Eng; 2000; 28(3 - 4):457-61. PubMed ID: 11108215
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tensile characteristics of ten commercial acrylic bone cements.
    Harper EJ; Bonfield W
    J Biomed Mater Res; 2000 Sep; 53(5):605-16. PubMed ID: 10984711
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Daptomycin-loaded polymethylmethacrylate bone cement for joint arthroplasty surgery.
    Hsu YM; Liao CH; Wei YH; Fang HW; Hou HH; Chen CC; Chang CH
    Artif Organs; 2014 Jun; 38(6):484-92. PubMed ID: 24571555
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical performance of acrylic bone cements containing different radiopacifying agents.
    Ginebra MP; Albuixech L; Fernández-Barragán E; Aparicio C; Gil FJ; San RJ; Vázquez B; Planell JA
    Biomaterials; 2002 Apr; 23(8):1873-82. PubMed ID: 11950058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.