BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 18634759)

  • 1. Specific or general? The nature of attention set changes triggered by distracting auditory events.
    Horváth J; Roeber U; Bendixen A; Schröger E
    Brain Res; 2008 Sep; 1229():193-203. PubMed ID: 18634759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual and cognitive task difficulty has differential effects on auditory distraction.
    Muller-Gass A; Schröger E
    Brain Res; 2007 Mar; 1136(1):169-77. PubMed ID: 17223092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distraction in a continuous-stimulation detection task.
    Horváth J; Winkler I
    Biol Psychol; 2010 Mar; 83(3):229-38. PubMed ID: 20064580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining task-dependencies of different attentional processes as reflected in the P3a and reorienting negativity components of the human event-related brain potential.
    Munka L; Berti S
    Neurosci Lett; 2006 Apr; 396(3):177-81. PubMed ID: 16356637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction?
    Horváth J; Winkler I; Bendixen A
    Biol Psychol; 2008 Oct; 79(2):139-47. PubMed ID: 18468765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To switch or not to switch: brain potential indices of attentional control after task-relevant and task-irrelevant changes of stimulus features.
    Hölig C; Berti S
    Brain Res; 2010 Jul; 1345():164-75. PubMed ID: 20580694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm.
    SanMiguel I; Corral MJ; Escera C
    J Cogn Neurosci; 2008 Jul; 20(7):1131-45. PubMed ID: 18284343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the auditory distraction paradigm: behavioral and event-related potential effects in a lateralized multi-deviant approach.
    Grimm S; Schröger E; Bendixen A; Bäss P; Roye A; Deouell LY
    Clin Neurophysiol; 2008 Apr; 119(4):934-47. PubMed ID: 18289933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attentional modulation in the detection of irrelevant deviance: a simultaneous ERP/fMRI study.
    Sabri M; Liebenthal E; Waldron EJ; Medler DA; Binder JR
    J Cogn Neurosci; 2006 May; 18(5):689-700. PubMed ID: 16768370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distraction of task-relevant information processing by irrelevant changes in auditory, visual, and bimodal stimulus features: a behavioral and event-related potential study.
    Boll S; Berti S
    Psychophysiology; 2009 May; 46(3):645-54. PubMed ID: 19386054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the auditory P3a reflecting an automatic process: elicitation during highly-focused continuous visual attention.
    Muller-Gass A; Macdonald M; Schröger E; Sculthorpe L; Campbell K
    Brain Res; 2007 Sep; 1170():71-8. PubMed ID: 17692834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mismatch negativity in children and adults, and effects of an attended task.
    Gomes H; Molholm S; Ritter W; Kurtzberg D; Cowan N; Vaughan HG
    Psychophysiology; 2000 Nov; 37(6):807-16. PubMed ID: 11117461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral and event-related potential distraction effects with regularly occurring auditory deviants.
    Jankowiak S; Berti S
    Psychophysiology; 2007 Jan; 44(1):79-85. PubMed ID: 17241142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary motor area contribution to attentional reorienting after distraction.
    Horváth J; Maess B; Berti S; Schröger E
    Neuroreport; 2008 Mar; 19(4):443-6. PubMed ID: 18287943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sustained deviance response evoked by the auditory oddball paradigm.
    Kretzschmar B; Gutschalk A
    Clin Neurophysiol; 2010 Apr; 121(4):524-32. PubMed ID: 20096627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results.
    Opitz B; Rinne T; Mecklinger A; von Cramon DY; Schröger E
    Neuroimage; 2002 Jan; 15(1):167-74. PubMed ID: 11771985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive control after distraction: event-related brain potentials (ERPs) dissociate between different processes of attentional allocation.
    Berti S
    Psychophysiology; 2008 Jul; 45(4):608-20. PubMed ID: 18346043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence for differential roles of temporal and frontal components of auditory change detection.
    Shalgi S; Deouell LY
    Neuropsychologia; 2007 Apr; 45(8):1878-88. PubMed ID: 17239410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.