These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 18634763)
1. Serotonin immunoreactivity in auditory brainstem neurons of the postnatal monoamine oxidase-A knockout mouse. Thompson AM Brain Res; 2008 Sep; 1228():58-67. PubMed ID: 18634763 [TBL] [Abstract][Full Text] [Related]
2. Serotonin-immunoreactive neurons in the postnatal MAO-A KO mouse lateral superior olive project to the inferior colliculus. Thompson AM; Thompson GC Neurosci Lett; 2009 Aug; 460(1):47-51. PubMed ID: 19446603 [TBL] [Abstract][Full Text] [Related]
3. Postnatal expression of the serotonin transporter in auditory brainstem neurons. Thompson AM; Lauder JM Dev Neurosci; 2005; 27(1):1-12. PubMed ID: 15886479 [TBL] [Abstract][Full Text] [Related]
4. "Non-serotonergic" lateral superior olivary neurons of the neonatal mouse contain serotonin. Thompson AM Brain Res; 2006 Nov; 1122(1):122-5. PubMed ID: 17034765 [TBL] [Abstract][Full Text] [Related]
5. CNTFRalpha and CNTF expressions in the auditory brainstem: light and electron microscopy study. Hafidi A; Decourt B; MacLennan AJ Hear Res; 2004 Aug; 194(1-2):14-24. PubMed ID: 15276672 [TBL] [Abstract][Full Text] [Related]
6. Localization of rat glycine receptor alpha1 and alpha2 subunit transcripts in the developing auditory brainstem. Piechotta K; Weth F; Harvey RJ; Friauf E J Comp Neurol; 2001 Sep; 438(3):336-52. PubMed ID: 11550176 [TBL] [Abstract][Full Text] [Related]
7. Auditory brainstem neural activation patterns are altered in EphA4- and ephrin-B2-deficient mice. Miko IJ; Nakamura PA; Henkemeyer M; Cramer KS J Comp Neurol; 2007 Dec; 505(6):669-81. PubMed ID: 17948875 [TBL] [Abstract][Full Text] [Related]
8. Immediate early gene expression invoked by electrical intracochlear stimulation in some but not all types of neurons in the rat auditory brainstem. Reisch A; Illing RB; Laszig R Exp Neurol; 2007 Dec; 208(2):193-206. PubMed ID: 17825819 [TBL] [Abstract][Full Text] [Related]
9. Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnelli. Zettel ML; Carr CE; O'Neill WE J Comp Neurol; 1991 Nov; 313(1):1-16. PubMed ID: 1761747 [TBL] [Abstract][Full Text] [Related]
10. Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus. Rosenberger MH; Fremouw T; Casseday JH; Covey E J Comp Neurol; 2003 Jul; 462(1):101-20. PubMed ID: 12761827 [TBL] [Abstract][Full Text] [Related]
11. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem. Michler SA; Illing RB J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137 [TBL] [Abstract][Full Text] [Related]
12. Differential calbindin-like immunoreactivity in the brain stem auditory system of the chinchilla. Kelley PE; Frisina RD; Zettel ML; Walton JP J Comp Neurol; 1992 Jun; 320(2):196-212. PubMed ID: 1619049 [TBL] [Abstract][Full Text] [Related]
13. Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse. Toyoshima M; Sakurai K; Shimazaki K; Takeda Y; Shimoda Y; Watanabe K Dev Biol; 2009 Dec; 336(2):192-200. PubMed ID: 19818338 [TBL] [Abstract][Full Text] [Related]
14. Fos-like immunoreactivity in central auditory neurons of the mouse. Brown MC; Liu TS J Comp Neurol; 1995 Jun; 357(1):85-97. PubMed ID: 7673470 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylated cAMP response element-binding protein levels in guinea pig brainstem auditory nuclei after unilateral cochlear ablation. Mo Z; Suneja SK; Potashner SJ J Neurosci Res; 2006 May; 83(7):1323-30. PubMed ID: 16511870 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide/cyclic guanosine monophosphate pathway in the peripheral and central auditory system of the rat. Fessenden JD; Altschuler RA; Seasholtz AF; Schacht J J Comp Neurol; 1999 Feb; 404(1):52-63. PubMed ID: 9886024 [TBL] [Abstract][Full Text] [Related]
17. Oxytocin within auditory nuclei: a neuromodulatory function in sensory processing? Kanwal JS; Rao PD Neuroreport; 2002 Dec; 13(17):2193-7. PubMed ID: 12488795 [TBL] [Abstract][Full Text] [Related]
18. Electrical stimulation of the cochlear nerve in rats: analysis of c-Fos expression in auditory brainstem nuclei. Nakamura M; Rosahl SK; Alkahlout E; Walter GF; Samii MM Brain Res; 2005 Jan; 1031(1):39-55. PubMed ID: 15621011 [TBL] [Abstract][Full Text] [Related]
19. Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of developing rats. Friauf E J Comp Neurol; 1993 Aug; 334(1):59-74. PubMed ID: 8408759 [TBL] [Abstract][Full Text] [Related]
20. Superior olivary contributions to auditory system plasticity: medial but not lateral olivocochlear neurons are the source of cochleotomy-induced GAP-43 expression in the ventral cochlear nucleus. Kraus KS; Illing RB J Comp Neurol; 2004 Jul; 475(3):374-90. PubMed ID: 15221952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]