These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18634907)

  • 1. Noradrenergic modulation of the respiratory neural network.
    Viemari JC
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):123-30. PubMed ID: 18634907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous noradrenaline affects the maturation and function of the respiratory network: possible implication for SIDS.
    Hilaire G
    Auton Neurosci; 2006 Jun; 126-127():320-31. PubMed ID: 16603418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of respiratory control: evolving concepts and perspectives.
    Gaultier C; Gallego J
    Respir Physiol Neurobiol; 2005 Nov; 149(1-3):3-15. PubMed ID: 15941676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormalities of respiratory control and the respiratory motor unit.
    Nogués MA; Benarroch E
    Neurologist; 2008 Sep; 14(5):273-88. PubMed ID: 18784597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations of brainstem transcription factors and central respiratory disorders.
    Blanchi B; Sieweke MH
    Trends Mol Med; 2005 Jan; 11(1):23-30. PubMed ID: 15649819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breathing control in neurological diseases.
    Nogués MA; Roncoroni AJ; Benarroch E
    Clin Auton Res; 2002 Dec; 12(6):440-9. PubMed ID: 12598948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents.
    Hilaire G; Viemari JC; Coulon P; Simonneau M; Bévengut M
    Respir Physiol Neurobiol; 2004 Nov; 143(2-3):187-97. PubMed ID: 15519555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Control and development of breathing, pathophysiological aspects].
    Schläfke ME
    Pneumologie; 1997 Apr; 51 Suppl 2():398-402. PubMed ID: 9244885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical cough I: the urge-to-cough: a respiratory sensation.
    Davenport PW
    Handb Exp Pharmacol; 2009; (187):263-76. PubMed ID: 18825345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory circuits: function, mechanisms, topology, and pathology.
    Mironov S
    Neuroscientist; 2009 Apr; 15(2):194-208. PubMed ID: 19307425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perinatal development of respiratory motoneurons.
    Greer JJ; Funk GD
    Respir Physiol Neurobiol; 2005 Nov; 149(1-3):43-61. PubMed ID: 15951250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pontine influences on respiratory control in ectothermic and heterothermic vertebrates.
    Milsom WK; Chatburn J; Zimmer MB
    Respir Physiol Neurobiol; 2004 Nov; 143(2-3):263-80. PubMed ID: 15519560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS): kindred disorders of autonomic regulation.
    Weese-Mayer DE; Berry-Kravis EM; Ceccherini I; Rand CM
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):38-48. PubMed ID: 18579454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor tyrosine kinases and respiratory motor plasticity.
    Golder FJ
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):242-51. PubMed ID: 18634908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain monoaminergic neurons and ventilatory control in vertebrates.
    Gargaglioni LH; Bícegoa KC; Branco LG
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):112-22. PubMed ID: 18550453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered central catecholaminergic transmission and cardiovascular disease.
    Kasparov S; Teschemacher AG
    Exp Physiol; 2008 Jun; 93(6):725-40. PubMed ID: 18326552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Canadian Association of Neuroscience Review: Respiratory control and behavior in humans: lessons from imaging and experiments of nature.
    Moss IR
    Can J Neurol Sci; 2005 Aug; 32(3):287-97. PubMed ID: 16225168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models.
    Amiel J; Dubreuil V; Ramanantsoa N; Fortin G; Gallego J; Brunet JF; Goridis C
    Respir Physiol Neurobiol; 2009 Aug; 168(1-2):125-32. PubMed ID: 19712905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of the maturation of respiratory control in the newborn infant.
    Revow M; England SJ; O'Beirne H; Bryan AC
    IEEE Trans Biomed Eng; 1989 Apr; 36(4):414-23. PubMed ID: 2714820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between orexinergic neurons and NMDA receptors in the control of locus coeruleus-cerebrocortical noradrenergic activity of the rat.
    Tose R; Kushikata T; Yoshida H; Kudo M; Furukawa K; Ueno S; Hirota K
    Brain Res; 2009 Jan; 1250():81-7. PubMed ID: 19007758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.