BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18635297)

  • 1. Comparison of naphthalene bioavailability determined by whole-cell biosensing and availability determined by extraction with Tenax.
    Kohlmeier S; Mancuso M; Deepthike U; Tecon R; van der Meer JR; Harms H; Wells M
    Environ Pollut; 2008 Dec; 156(3):803-8. PubMed ID: 18635297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a whole-cell biosensor to assess the bioavailability enhancement of aromatic hydrocarbon compounds by nonionic surfactants.
    Keane A; Lau PC; Ghoshal S
    Biotechnol Bioeng; 2008 Jan; 99(1):86-98. PubMed ID: 17570716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical techniques for assessing bioavailability of sediment-associated contaminants: SPME versus Tenax extraction.
    You J; Harwood AD; Li H; Lydy MJ
    J Environ Monit; 2011 Apr; 13(4):792-800. PubMed ID: 21412561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil.
    Patterson CJ; Semple KT; Paton GI
    FEMS Microbiol Lett; 2004 Dec; 241(2):215-20. PubMed ID: 15598535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites.
    Park W; Jeon CO; Cadillo H; DeRito C; Madsen EL
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):429-35. PubMed ID: 12928756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor.
    Werlen C; Jaspers MC; van der Meer JR
    Appl Environ Microbiol; 2004 Jan; 70(1):43-51. PubMed ID: 14711624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of whole-cell bacterial sensors in biotechnology and environmental science.
    Yagi K
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1251-8. PubMed ID: 17111136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds.
    Li YF; Li FY; Ho CL; Liao VH
    Environ Pollut; 2008 Mar; 152(1):123-9. PubMed ID: 17583401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioreporters: gfp versus lux revisited and single-cell response.
    Kohlmeier S; Mancuso M; Tecon R; Harms H; van der Meer JR; Wells M
    Biosens Bioelectron; 2007 Mar; 22(8):1578-85. PubMed ID: 16930979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of total and bioavailable lysine in feed protein sources by a whole-cell green fluorescent protein growth-based Escherichia coli biosensor.
    Chalova VI; Kim WK; Woodward CL; Ricke SC
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):91-9. PubMed ID: 17487484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naphthalene and phenanthrene sorption to very low organic content diatomaceous earth: modeling implications for microbial bioavailability.
    Mittal M; Rockne KJ
    Chemosphere; 2009 Feb; 74(8):1134-44. PubMed ID: 19058832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance liquid chromatography-tandem mass spectrometry for the analysis of 10 pesticides in water: a comparison between membrane-assisted solvent extraction and solid phase extraction.
    van Pinxteren M; Bauer C; Popp P
    J Chromatogr A; 2009 Jul; 1216(31):5800-6. PubMed ID: 19570541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas putida based amperometric biosensors for 2,4-D detection.
    Odaci D; Sezgintürk MK; Timur S; Pazarlioğlu N; Pilloton R; Dinçkaya E; Telefoncu A
    Prep Biochem Biotechnol; 2009; 39(1):11-9. PubMed ID: 19090417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A survey of the year 2002 commercial optical biosensor literature.
    Rich RL; Myszka DG
    J Mol Recognit; 2003; 16(6):351-82. PubMed ID: 14732928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a whole-cell cadmium sensor with a toggle gene circuit.
    Wu CH; Le D; Mulchandani A; Chen W
    Biotechnol Prog; 2009; 25(3):898-903. PubMed ID: 19507257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal.
    Yong YC; Zhong JJ
    Biosens Bioelectron; 2009 Sep; 25(1):41-7. PubMed ID: 19574033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance.
    Fu YJ; Chen WL; Huang QY
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):363-70. PubMed ID: 18437376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Ban YM; Lee CH; Chung CH; Ahn IS
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):91-6. PubMed ID: 18023561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of bamboo charcoal as solid-phase extraction adsorbent for the determination of atrazine and simazine in environmental water samples by high-performance liquid chromatography-ultraviolet detector.
    Zhao RS; Yuan JP; Jiang T; Shi JB; Cheng CG
    Talanta; 2008 Aug; 76(4):956-9. PubMed ID: 18656684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-cycle markers and biosensors.
    Kurzawa L; Morris MC
    Chembiochem; 2010 May; 11(8):1037-47. PubMed ID: 20397180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.