BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 18635576)

  • 1. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
    Mendes HF; Cheetham ME
    Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological manipulation of rhodopsin retinitis pigmentosa.
    Mendes HF; Zaccarini R; Cheetham ME
    Adv Exp Med Biol; 2010; 664():317-23. PubMed ID: 20238031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hammerhead ribozymes designed to cleave all human rod opsin mRNAs which cause autosomal dominant retinitis pigmentosa.
    Sullivan JM; Pietras KM; Shin BJ; Misasi JN
    Mol Vis; 2002 Apr; 8():102-13. PubMed ID: 11961505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy.
    Mendes HF; van der Spuy J; Chapple JP; Cheetham ME
    Trends Mol Med; 2005 Apr; 11(4):177-85. PubMed ID: 15823756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H.
    Noorwez SM; Malhotra R; McDowell JH; Smith KA; Krebs MP; Kaushal S
    J Biol Chem; 2004 Apr; 279(16):16278-84. PubMed ID: 14769795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inherent instability of the retinitis pigmentosa P23H mutant opsin.
    Chen Y; Jastrzebska B; Cao P; Zhang J; Wang B; Sun W; Yuan Y; Feng Z; Palczewski K
    J Biol Chem; 2014 Mar; 289(13):9288-303. PubMed ID: 24515108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa.
    Noorwez SM; Kuksa V; Imanishi Y; Zhu L; Filipek S; Palczewski K; Kaushal S
    J Biol Chem; 2003 Apr; 278(16):14442-14450. PubMed ID: 12566452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinobenzaldehydes as proper-trafficking inducers of folding-defective P23H rhodopsin mutant responsible for retinitis pigmentosa.
    Ohgane K; Dodo K; Hashimoto Y
    Bioorg Med Chem; 2010 Oct; 18(19):7022-8. PubMed ID: 20805032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations.
    Sakami S; Maeda T; Bereta G; Okano K; Golczak M; Sumaroka A; Roman AJ; Cideciyan AV; Jacobson SG; Palczewski K
    J Biol Chem; 2011 Mar; 286(12):10551-67. PubMed ID: 21224384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa.
    Drenser KA; Timmers AM; Hauswirth WW; Lewin AS
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):681-9. PubMed ID: 9538873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the ER stress-response protein PERK in rhodopsin retinitis pigmentosa.
    Athanasiou D; Aguila M; Bellingham J; Kanuga N; Adamson P; Cheetham ME
    Hum Mol Genet; 2017 Dec; 26(24):4896-4905. PubMed ID: 29036441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation.
    Saliba RS; Munro PM; Luthert PJ; Cheetham ME
    J Cell Sci; 2002 Jul; 115(Pt 14):2907-18. PubMed ID: 12082151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of rapamycin on the fate of P23H opsin associated with retinitis pigmentosa (an American Ophthalmological Society thesis).
    Kaushal S
    Trans Am Ophthalmol Soc; 2006; 104():517-29. PubMed ID: 17471359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Small Molecular Chaperones Binding P23H Mutant Opsin through an In Silico Structure-Based Approach.
    Picarazzi F; Zuanon M; Pasqualetto G; Cammarone S; Romeo I; Young MT; Brancale A; Bassetto M; Mori M
    J Chem Inf Model; 2022 Nov; 62(22):5794-5805. PubMed ID: 36367985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin.
    Noorwez SM; Ostrov DA; McDowell JH; Krebs MP; Kaushal S
    Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):3224-30. PubMed ID: 18378578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa.
    Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME
    Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control.
    Athanasiou D; Bevilacqua D; Aguila M; McCulley C; Kanuga N; Iwawaki T; Chapple JP; Cheetham ME
    Hum Mol Genet; 2014 Dec; 23(24):6594-606. PubMed ID: 25055872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiP prevents rod opsin aggregation.
    Athanasiou D; Kosmaoglou M; Kanuga N; Novoselov SS; Paton AW; Paton JC; Chapple JP; Cheetham ME
    Mol Biol Cell; 2012 Sep; 23(18):3522-31. PubMed ID: 22855534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual role for EDEM1 in the processing of rod opsin.
    Kosmaoglou M; Kanuga N; AguilĂ  M; Garriga P; Cheetham ME
    J Cell Sci; 2009 Dec; 122(Pt 24):4465-72. PubMed ID: 19934218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.