BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 18635612)

  • 1. Origin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex.
    Anderson JS
    AJNR Am J Neuroradiol; 2008 Oct; 29(9):1722-9. PubMed ID: 18635612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relating BOLD fMRI and neural oscillations through convolution and optimal linear weighting.
    Zumer JM; Brookes MJ; Stevenson CM; Francis ST; Morris PG
    Neuroimage; 2010 Jan; 49(2):1479-89. PubMed ID: 19778617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced BOLD response to periodic visual stimulation.
    Parkes LM; Fries P; Kerskens CM; Norris DG
    Neuroimage; 2004 Jan; 21(1):236-43. PubMed ID: 14741661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex.
    Bayram A; Karahan E; Bilgiç B; Ademoglu A; Demiralp T
    Vision Res; 2016 Oct; 127():177-185. PubMed ID: 27613997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry.
    Fawcett IP; Barnes GR; Hillebrand A; Singh KD
    Neuroimage; 2004 Apr; 21(4):1542-53. PubMed ID: 15050578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BOLD responses to different temporal frequency stimuli in the lateral geniculate nucleus and visual cortex: insights into the neural basis of fMRI.
    Yen CC; Fukuda M; Kim SG
    Neuroimage; 2011 Sep; 58(1):82-90. PubMed ID: 21704712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
    Chen JE; Glover GH
    Neuroimage; 2015 Feb; 107():207-218. PubMed ID: 25497686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex.
    Muthukumaraswamy SD; Singh KD
    Neuroimage; 2008 May; 40(4):1552-60. PubMed ID: 18337125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnocellular and parvocellular visual pathways have different blood oxygen level-dependent signal time courses in human primary visual cortex.
    Liu CS; Bryan RN; Miki A; Woo JH; Liu GT; Elliott MA
    AJNR Am J Neuroradiol; 2006 Sep; 27(8):1628-34. PubMed ID: 16971600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency dependence and gender effects in visual cortical regions involved in temporal frequency dependent pattern processing.
    Kaufmann C; Elbel GK; Gössl C; Pütz B; Auer DP
    Hum Brain Mapp; 2001 Sep; 14(1):28-38. PubMed ID: 11500988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional decoupling of BOLD and gamma-band amplitudes in human primary visual cortex.
    Muthukumaraswamy SD; Singh KD
    Hum Brain Mapp; 2009 Jul; 30(7):2000-7. PubMed ID: 18729078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation.
    Nir Y; Hasson U; Levy I; Yeshurun Y; Malach R
    Neuroimage; 2006 May; 30(4):1313-24. PubMed ID: 16413791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization of intrinsic 0.1-Hz blood-oxygen-level-dependent oscillations in amygdala and prefrontal cortex in subjects with increased state anxiety.
    Pfurtscheller G; Schwerdtfeger A; Seither-Preisler A; Brunner C; Aigner CS; Calisto J; Gens J; Andrade A
    Eur J Neurosci; 2018 Mar; 47(5):417-426. PubMed ID: 29368814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies.
    Magri C; Schridde U; Murayama Y; Panzeri S; Logothetis NK
    J Neurosci; 2012 Jan; 32(4):1395-407. PubMed ID: 22279224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions.
    Stevens WD; Buckner RL; Schacter DL
    Cereb Cortex; 2010 Aug; 20(8):1997-2006. PubMed ID: 20026486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging.
    Menon RS; Ogawa S; Strupp JP; Uğurbil K
    J Neurophysiol; 1997 May; 77(5):2780-7. PubMed ID: 9163392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism.
    Wan X; Riera J; Iwata K; Takahashi M; Wakabayashi T; Kawashima R
    Neuroimage; 2006 Aug; 32(2):616-25. PubMed ID: 16697664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in BOLD transients with visual stimuli across 1-44 Hz.
    Emir UE; Bayraktaroglu Z; Ozturk C; Ademoglu A; Demiralp T
    Neurosci Lett; 2008 May; 436(2):185-8. PubMed ID: 18400397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism.
    Villalobos ME; Mizuno A; Dahl BC; Kemmotsu N; Müller RA
    Neuroimage; 2005 Apr; 25(3):916-25. PubMed ID: 15808991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.